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A guide on tensors is proposed for undergraduate students in physics or engineering that ties
directly to vector calculus in orthonormal coordinate systems. We show that once orthonormality is
relaxed, a dual basis, together with the contravariant and covariant components, naturally emerges.
Manipulating these components requires some skill that can be acquired more easily and quickly
once a new notation is adopted. This notation distinguishes multi-component quantities in different
coordinate systems by a differentiating sign on the index labelling the component rather than on the
label of the quantity itself. This tiny stratagem, together with simple rules openly stated at the
beginning of this guide, allows an almost automatic, easy-to-pursue procedure for what is
otherwise a cumbersome algebra. By the end of the paper, the reader will be skillful enough to
tackle many applications involving tensors of any rank in any coordinate system, without index-
manipulation obstacles standing in the way. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4802811]

I. INTRODUCTION

Undergraduate students, to whom this paper is addressed,
are generally aware of the importance of tensors. However,
as pointed out by others,1 unless students have been engaged
in a course dedicated to the study of tensors, the subject
remains covered in a veil of mystery. Given that an under-
standing of tensors helps aid in understanding even simple
experiments carried out in undergraduate laboratory
courses,2 this is unfortunate and is due, in our opinion, to
two major causes. First, a lack in the literature of a presenta-
tion of tensors that is tied to what students already know
from courses they have already taken, such as calculus, vec-
tor algebra, and vector calculus. And second, the use of a
notation that turns the necessary use of multiple indices into
an unnecessarily cumbersome process.

To be sure, there exist plenty of excellent books, such as
The Absolute Differential Calculus by Levi-Civita,3 to name
a classic book written by one of the founders of the field.
This outstanding treatise, however, starts with three long
chapters on functional determinants and matrices, systems of
total differential equations, and linear partial differential
equations, before entering into the algebraic foundations of
tensor calculus. And even so, little connection is made to the
vector algebra and calculus that are a standard part of the
undergraduate physics curriculum. Given the treatise nature
of this book (which, by the way, is a must read by anybody
who aims at being a professional on the subject), this circum-
stance is not terribly surprising, but it does make the book
only somewhat appropriate to those readers (undergraduates)
we have in mind here.

The excellent book by Schouten,4 another founder of ten-
sor analysis, in spite of its promising title, Tensor Analysis
for Physicists, leaves us with some doubts on its appropriate-
ness for undergraduate students. It is enough to browse
through the book to realize that the target audience is quite
advanced. The author himself, in the preface to the first edi-
tion, claims that some readers “can avoid actually working
through the whole of the earlier chapters” (namely, the first
five chapters, after which a “brief summary of the salient

points of the theory” are provided). In the preface to the sec-
ond edition, the author contradicts his previous statement
with the warning, “Do not use this book in the wrong way…
It is advisable to study the first chapters I-V thoroughly.”
We tend to agree with the latter advice and believe that,
as with any subject, there are no short cuts. Yet, we also
believe that the background necessary to get started can be
presented more efficiently than is currently available in the
literature.

Besides the classics by Levi-Civita and Schouten, several
other books exist at both the introductory5–10 and
advanced11–16 levels (the books referenced are simply a sam-
pling of those we consider worthwhile to an undergraduate
student). The second barrier mentioned is related to notation.
To become acquainted with the field, it is necessary to gain
some virtuosity with the so-called “index gymnastics.”
Without this skill, it is not possible for anybody to follow the
calculations of others or to perform their own. The origin of
much difficulty resides, we believe, in a notation that is
widely used in the journal literature, in specific books on ten-
sors (certainly in all the books referenced above, with only
three exceptions), and in most popular books on mathemati-
cal methods for physicists.17 Being a tensor refers to a prop-
erty possessed by a multi-component quantity, defined
within a coordinate system, whose components transform in
a specific way upon changing the coordinate system. The
notation we are referring to here is that if the components of
the multi-component quantity A are denoted by Aa in a par-
ticular coordinate system, those in another coordinate system
are often denoted by, for instance, A0a or "Aa—of the sixteen
books quoted in Refs. 3–17, seven use the former notation
and six use the latter. As reasonable as it might seem, such a
practice is the origin of an unnecessary confusion, perfectly
avoidable as long as the prime (or the bar) is attached to the
index, such as in Aa0 . This tiny change in notation might
seem extravagant and unnatural but, as we shall see, it
greatly simplifies the manipulations involved. Schouten (b.
1883) is seemingly the one who first introduced this notation
so we will name it after him. What we propose in this paper
is that Schouten’s notation be widely adopted.
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Only three authors among the ones quoted in Refs. 3–17
follow Schouten’s notation: Jeevanjee, Lichnerowicz, and,
of course, Schouten himself. However, Lichnerowicz uses
the notation inappropriately and adds confusion to the mat-
ter. In Schouten’s notation, a sum over the components of A,
which in the unprimed coordinate system is written asPN

a¼1 Aa, in the primed coordinate system is correctly writ-
ten as

PN
a¼1 Aa0 and not as

PN
a0¼1 Aa0 , which is what

Lichnerowicz (incorrectly) writes.
A common notation that we adopt is the Einstein summa-

tion rule. As we will see, we need two types of indices that
we distinguish from each other by locating them either in a
lower position, as in Aa or in an upper position, as in Aa. The
Einstein summation rule is:

Rule 0: Whenever an index is repeated twice in a prod-
uct—once in an upper position and once in a lower posi-
tion—the index is called a dummy index and summation over
it is implied. For instance, Aa0b0Bb0

c means
P

b Aa0b0Bb0
c

¼ Aa010B
10
c þ Aa020B

20
c þ # # #, and Ca

a means
P

a Ca
a ¼ C1

1
þC2

2 þ # # #.
An index that is not a dummy index is called a free index.

Dummy and free indices follow three rules that, as trivial as
they might sound, are so crucial and used continuously that
we better state them explicitly:

Rule 1: In the case of a multiple sum, different letters must
denote the dummy indices even though one letter is primed
and the other is not. For instance, we will not write Aa0aBa0a

but rather Aa0bBa0b to imply a double sum over the two indices.
Rule 2: A dummy index may be renamed, at will and as

convenience requires, within any single factor (as long there
is no conflict with Rule 1).

Rule 3: Any free index must appear with the same name
and position on each side of an equation; thereafter, if one
wishes to rename it, it must be done throughout the entire
equation.

The remainder of this paper is organized as follows. In
Sec. II, we discuss the background assumed, and presumably
shared, by undergraduate students in physics or engineer-
ing—vector calculus in a Cartesian coordinate system.18 As
we will see, there is no need to have upper and lower indices
in such a coordinate system; all indices appear as lower indi-
ces. Hence, only in Sec. II, do we allow the Einstein summa-
tion rule to apply to each repeated index, even though
located twice in a lower position.

In subsequent sections, we tie the background of Sec. II to
the algebra and calculus of tensors. In Sec. III, we adopt an ar-
bitrary basis (not necessarily orthonormal) and see how the
dual basis naturally emerges, so that for each vector one has to
deal with two types of components—those with respect to the
original basis and those with respect to its dual. In Sec. IV, we
see how the dual basis and the two types of components trans-
form under a coordinate transformation, and we introduce the
tensor-character concept. In Sec. V, we consider scalar, vector,
and tensor fields, introduce the covariant derivative, and pro-
vide coordinate-independent expressions for the gradient and
Laplacian of a scalar field and for the divergence and curl of a
vector field. Finally, in Sec. VI, we tailor these expressions to
general orthogonal coordinates, thereby completing our jour-
ney back to what our readers are likely to be familiar with.

II. A REVIEW: ORTHONORMAL BASES

Let fx̂a ; a ¼ 1; 2; 3g be an orthonormal basis spanning
the vectors of the ordinary Euclidean three-dimensional (3D)

space. The vectors may be associatively and commutatively
summed, there is a unique zero-vector, and each vector has
its unique opposite. The vectors may be associatively multi-
plied by real numbers, an operation that is distributive with
respect to both the sum of real numbers and the sum of vec-
tors.19 Between any two vectors is defined a dot (or scalar)
product, a commutative rule that associates a real number to
each pair of vectors. This dot-product rule is distributive
with respect to a linear combination of vectors and provides
a non-negative number whenever a vector is dotted with
itself (only the zero-vector dotted with itself gives the num-
ber zero).20 A set of vectors fAn; n ¼ 1; :::;Ng is said to be
linearly independent if (note that a sum over n is implied)

CnAn ¼ 0 ) Cn ¼ 0 8n: (1)

In general, if N is the maximum allowed number of linearly
independent vectors, then the space is said to be N-dimen-
sional and, in this case, N linearly independent vectors are
said to form a basis—any vector may be written as a linear
combination of the basis. Our ordinary space is Euclidean
because the Pythagorean theorem holds, and it is 3D because
the maximum value of N is N ¼ 3; that is, there exist sets of
three vectors fea ; a ¼ 1; 2; 3g such that any vector A may
be written as a linear combination of the vectors ea.

In our ordinary 3D space a basis of vectors may always
be chosen to be orthonormal. By this we mean that if fx̂a ; a
¼ 1; 2; 3g is such a basis, their mutual dot products obey

x̂a # x̂b ¼ dab; (2)

where dab is the Kronecker delta, a quantity whose 9 compo-
nents are equal to 0 if a 6¼ b or equal to 1 if a ¼ b. Each vec-
tor may be written as

A ¼ Aax̂a; (3)

where Aa is the ath component of the vector A in the basis
fx_ ag. A direct consequence of Eqs. (2) and (3) and the
stated properties of the dot product is that

Aa ¼ x̂a # A (4)

and

A # B ¼ ðAax̂aÞ # ðBbx̂bÞ ¼ ðAaBbÞðx̂a # x̂bÞ
¼ ðAaBbÞdab ¼ AaBa: (5)

As done here, and in several calculations that follow, we
shall redundantly collect some factors within parentheses
with the aim of clarifying the algebra involved without the
need for any other explanation.

In the 3D space, a cross (or vector) product is defined as

A& B ' det
x̂1 x̂2 x̂3

A1 A2 A3

B1 B2 B3

2

4

3

5 ¼ eabcAaBbx̂c; (6)

where eabc is the Levi-Civita symbol, a quantity whose 27
components are equal to þ1 or (1 according to whether
ða; b; cÞ forms an even or odd permutation of the sequence
ð1; 2; 3Þ, and equal to 0 otherwise (if two or more indices
take on the same value).

A field is a function of the space coordinates
x ' ðx1; x2; x3Þ, and possibly of time as well, and may be a
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scalar or a vector field depending on whether the function is a
scalar or a vector. In this section, we denote the differential
operator by @a ' @=@xa. Given a vector field A ¼ AðxÞ
¼ AaðxÞx̂a, its divergence is the scalar field given by

r # A ¼ @aAa (7)

and its curl is the vector field given by

r& A ' det
x̂1 x̂2 x̂3

@1 @2 @3

A1 A2 A3

2

4

3

5 ¼ eabc@aAbx̂c: (8)

Given a scalar field /ðxÞ, its gradient is the vector field
defined by

r/ðxÞ ¼ x̂a@a/; (9)

and its Laplacian is defined as the divergence of its gradient,
namely

D/ ' r2/ ' r #r/ ¼ @a@a/: (10)

Why do we need scalars, vectors, and, in general, tensors?
What we need in defining a physical quantity is for it to have
some character of objectivity in the sense that it does not
have to depend on the coordinate system used. For instance,
a one-component function of position, such as a temperature
field specifying the temperature T at each point P of space,
must provide a unique value T when the point P is consid-
ered, regardless of the coordinate system used.

Not every quantity specified by a single number is a sca-
lar. For example, in our 3D space whose points are parame-
terized by a Cartesian coordinate system, all displacements
from a given point, such as the origin, will be specified by
three quantities ðx1; x2; x3Þ. Now, the displacement that in
one coordinate system is specified, for instance, as ð1; 0; 0Þ,
would be specified as ð0; 1; 0Þ in a coordinate system rotated
clockwise by p=2 around the third axis. Thus, each compo-
nent of the displacement is indeed a single-component quan-
tity, yet these components depend on the coordinate system
used (they are not scalars) and do not have that objectivity
character we desire. An objectivity-preserving, single-com-
ponent quantity must transform in a specific way under a
coordinate transformation—it must be an invariant.

Likewise, multi-component quantities must have an objec-
tivity character (and are thereby called vectors and tensors),
a circumstance that translates into specific rules about how
their components must transform in order to preserve that
objectivity. As not all single-component quantities are sca-
lars, similarly, not all multi-component quantities are vectors
or tensors. We will specify the transformation rules in Sec.
IV. For the time being, we only remark that the above defini-
tions for dot and cross products, divergence, curl, and gradi-
ent are what they are because they assure that the objectivity
we are requiring is preserved. For instance, we will see that
the above-defined displacements are vectors, and the dot
product [as defined in Eq. (5)] of each displacement with
itself is a scalar. Had we defined, for instance, the single-
component quantity ðx1Þ2 ( ðx2Þ2 þ ðx3Þ2, we would not
have had an invariant. (For the displacement example con-
sidered in the previous paragraph, this quantity is equal to
þ1 in the first coordinate system and –1 in the other.)

Another reason to require in physics the objectivity we
are considering here is that if we believe our space to be

homogeneous and isotropic (invariant under translations and
rotations) and if we believe in the law of inertia (that invari-
ance under a Lorentz transformation holds), then the funda-
mental laws of physics must be accordingly invariant. In
other words, they must be expressed by equations involving
single- and multi-component quantities that under transla-
tion, rotation, and Lorentz transformations preserve the ob-
jectivity character we are after. Quantities with such a
character and defined in an N-dimensional space are called
tensors and, more specifically, rth-rank tensors if they have
Nr components. Scalars, being single-component quantities,
are then zero-rank tensors, while vectors, being N-compo-
nent quantities, are first-rank tensors. Higher-rank tensors
are…well, tensors!

To see how higher-rank quantities naturally emerge, a
classic example is the case of the stress tensor defined on
each point of a solid body. We consider a small volume V
surrounding a point within the solid and let Fa denote the ath
Cartesian component of the total internal stress force in V.
This force may be due, for instance, to external forces being
applied to the surface of the body, or because V feels on its
surface the gravitational force due to the rest of the surround-
ing body. Whatever its cause, the internal stress force can be
written Fa ¼

Ð
V dV/a, where /a is the ath Cartesian compo-

nent of the stress force density. Stress forces act within a few
molecular layers (their action range is negligible when com-
pared to the linear dimensions of the body) so they act
through the surface S enclosing V. The above volume inte-
gral must then be expressible as a surface integral over S,
and making use of the divergence (Gauss’s) theorem, we
have Fa ¼

Ð
V @brabdV ¼

Ð
S rabnbds, where nb is the bth

component of the unit vector perpendicular to the surface
element ds of S, /a ¼ @brab, and rab is a 9-component quan-
tity called the stress tensor.

III. ARBITRARY BASES: DUALITY

For reasons that will soon become apparent, for the re-
mainder of the paper, we apply the Einstein summation rule
as stated in Sec. I: summation over a repeated index is
implied only if it appears once in an upper and once in a
lower position. Let us now see what happens as soon as we
relax our very first assumption, expressed in Eq. (2), accord-
ing to which the basis used is orthonormal. In contrast to Eq.
(2), we then consider a set of basis vectors fea ; a ¼ 1; 2; 3g
for which

gab ' ea # eb 6¼ dab: (11)

It is appropriate to remark at this point that the (symmetric)
matrix ½gab*, whose elements are gab, has the determinant
G ' det½gab* 6¼ 0. In fact, given feag as a basis its vectors
are linearly independent [Eq. (1) holds] so that

Caea ¼ 0 ) Ca ¼ 0 8a: (12)

But this equation implies that

ðCaeaÞ # eb ¼ Caðea # ebÞ ¼ Cagab ¼ 0 ) Ca ¼ 0 8a:
(13)

However, a homogeneous linear equation such as Cagab ¼ 0
possesses the trivial solution (Ca ¼ 0) if and only if
det½gab* 6¼ 0. (Incidentally, this implies that ½gab* is a
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non-singular matrix; in other words, it admits an inverse.) We
shall denote the elements of the inverse matrix by gab, so that

½gab*(1 ' ½gab*; (14)

which is equivalent to writing

½gab*½gab* ¼ I or gacgcb ¼ db
a; (15)

where I is the identity matrix and the indices in the
Kronecker delta have been written according to our Rule 3.
Clearly, ½gab* is also symmetric and det½gab* ¼ 1=det½gab*
' 1=G, a result that follows from Eq. (15) and the fact that
the determinant of a product of matrices is equal to the prod-
uct of their determinants.

Any vector can be expressed as a linear combination of
the basis feag so that

A ¼ Aaea; (16)

which is equivalent to Eq. (3) except for the change in nota-
tion, where the components of the vector A in the basis feag
have been labelled with an upper index. However, if one
asks if Aa ¼ ea # A or A # B ¼

P
a AaBa still hold as in Eqs.

(4) and (5), the answer is negative:

ea # A ¼ ea # ðAbebÞ ¼ ðea # ebÞAb ¼ gabAb 6¼ da
bAb ¼ Aa

(17)

and

A # B ¼ ðAaeaÞ # ðBbebÞ ¼ ðea # ebÞAaBb

¼ gabAaBb 6¼ dabAaBb ¼
X

a

AaBa: (18)

In conclusion, Aa 6¼ ea # A and A # B 6¼
P

a AaBa. Please
note that stating Aa 6¼ ea # A is in keeping with Rule 3. In
some sense, Rule 3 warns us that this cannot be a bona fide
equality. The reader might wonder whether this is a conse-
quence of the adopted rule and our having arbitrarily set the
labeling index in the upper position. This is not the case. The
inequality in Eq. (17) says that the ath component of a vector
A in a given basis feag is not given by the dot product of A
with ea, no matter where we choose to locate the index to
label that component; Rule 3 simply certifies that this is so.

A natural question to ask is whether there exists some other
basis, which we provisionally denote by feag, such that

Aa ¼ ea # A: (19)

Although this provisional notion is motivated by our desire
to follow Rule 3, we will see that such a basis does exist and
is unique. Moreover, if we call feag the dual basis of the
original basis feag, it turns out that the dual of feag is simply
feag. To find such a basis, we note that Eqs. (16) and (19)
lead to

Aa ¼ ea # A ¼ ea # ðAbebÞ ¼ ðea # ebÞAb; (20)

which holds provided the vectors feag are solutions of the
equation

ea # eb ¼ da
b: (21)

If the vectors feag exist they must be expressible as a linear
combination of the basis feag. Therefore, ea ¼ Cacec and the

left-hand side of Eq. (21) becomes ðCacecÞ # eb ¼ Cacðec # ebÞ
¼ Cacgcb, which means

Cacgcb ¼ da
b: (22)

Because the matrix ½gab* is non-singular, Eq. (22) has the
solution ½Cab* ¼ ½gab*(1 ¼ ½gab*, which means that the unique
solution of Eq. (21) is given by

ea ¼ gabeb: (23)

The basis feag is called the dual basis of feag and is
obtained from the latter by transforming it via the matrix
inverse of ½ea # eb*. Similarly, the dual basis of the basis feag
is obtained from the latter by transforming it via the matrix
inverse of ½ea # eb*. To understand this, we note that Eqs. (23)
and (21) lead to

ea # eb ¼ ðgacecÞ # eb ¼ gacðec # ebÞ ¼ gacdb
c ¼ gab; (24)

so that

gab ¼ ea # eb (25)

whereby ½ea # eb*(1 ' ½gab*(1 ¼ ½gab*. Thus, the vector dual
to ea is

gabeb ¼ gabðgbcecÞ ¼ ðgabgbcÞec ¼ dc
aec ¼ ea: (26)

In other words, if the basis dual to feag is feag, then the ba-
sis dual to the latter is feag:

fea ¼ gabebg () fea ¼ gabebg: (27)

We therefore see that once a non-orthonormal basis is con-
sidered, another basis—its dual—naturally emerges.
Accordingly, any vector A may then be written as

A ¼ Abeb ¼ Abeb; (28)

where the components Aa can be found by dotting ea with
Eq. (28) and using Eq. (21) to get

Aa ¼ A # ea: (29)

Similarly, the components Aa can be found by dotting ea

with Eq. (28) to get

Aa ¼ A # ea: (30)

For reasons that will become apparent in the following sec-
tion, the components labeled by an upper index are called
the contravariant components of A, and those labeled by a
lower index are called the covariant components of A. A
relation between the contravariant and covariant components
may be readily obtained from the equality Abeb ¼ Abeb: dot-
ting it with either ea or ea and using Eq. (21) together with
either Eq. (11) or Eq. (25) gives

Aa ¼ gabAb (31)

and

Aa ¼ gabAb: (32)
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What about the dot product between two vectors? Using
Eqs. (28), (21), (11), and (25), we now have four ways to
write it [compare with Eq. (5)]:

A # B ¼ gabAaBb ¼ gabAaBb ¼ AaBa ¼ AaBa: (33)

If we consider the two sets of components as vectors of two
different spaces, one dual of the other, we would say that the
dot product is actually performed between the vectors of a
space and those of its dual. This distinction is hidden when
an orthonormal basis is used because gab ¼ dab and from
Eqs. (27), (31), and (32) we see that such a basis is self-dual
so the contravariant and covariant components coincide; this
is why there was no need in Sec. II to distinguish between
them by using upper and lower indices.

We notice here that in our 3D space, a ready way to obtain
the dual vectors ea of a given basis feag is by using the
relation

ea ¼ eb & ec

V
: (34)

Here ða; b; cÞ form an even permutation of the triplet ð1; 2; 3Þ
and V ¼ ea # ðeb & ecÞ is the volume of the parallelepiped
spanned by the vectors of feag. Indeed, the vectors defined
by Eq. (34) satisfy Eq. (21), whose unique solution guaran-
tees that these vectors are the wanted duals.21

To find the contravariant and covariant components of the
cross product of two vectors, let us first show that for any
given six vectors, which shall here be denoted as S1, S2, S3,
T1, T2, and T3, one has

ðS1 # S2 & S3ÞðT1 # T2 & T3Þ ¼ det½Sa # Tb*: (35)

Using Eqs. (5) and (6), we see that the left-hand side
becomes det½SaA*det½TbB* ¼ det½SaA*det½TBb* ¼ det½SaATAb*,
thus proving the assertion. Here, SaA is the Ath component of
the vector Sa (with similar meaning for TaA) and we have
made use of the facts that determinants are invariant when
rows and columns are interchanged (first equality) and the
determinant of a product of matrices is equal to the product
of their determinants (second equality). Applying Eq. (35) to
the basis feag we get

V2 ¼ ðe1 # e2 & e3Þ2 ¼ det½ea # eb* ¼ det½gab* ' G; (36)

where again, V ¼ ea # ðeb & ecÞ is the volume of the parallel-
epiped spanned by the basis vectors ea. To avoid any
unlikely confusion between an upper index and a power
exponent, we have inserted within parentheses all quantities
raised to a power. We note that

ðe1 # e2 & e3Þ2 ¼ det½ea # eb* ¼ det½gab* ¼ 1=G; (37)

due to the fact that det½gab* ¼ 1=det½gab*. Armed with Eqs.
(36)–(37) and (28)–(30), we are now ready to give an expres-
sion for the cross product of two vectors C ¼ A& B. For the
covariant components, we have

Cc ¼ C # ec ¼ ðA& BÞ # ec ¼ AaBbðea & ebÞ # ec

¼ VeabcAaBb ¼
ffiffiffiffi
G
p

eabcAaBb; (38)

and similarly, for the contravariant components, we have

Cc ¼ C # ec ¼ ðA& BÞ # ec ¼ AaBbðea & ebÞ # ec

¼ 1ffiffiffiffi
G
p eabcAaBb; (39)

where eabc ¼ eabc with the indices located to be consistent
with our Rule 0. In conclusion we have

A& B ¼
ffiffiffiffi
G
p

eabcAaBbec ¼ 1ffiffiffiffi
G
p eabcAaBbec: (40)

From Eqs. (11) and (25), we see that the quantities gab and
gab depend only on the basis vectors (the way the space has
been parameterized). In addition, from Eqs. (27), (31), and
(32), we see that these quantities determine the dual basis
from the original basis and relate the covariant and contra-
variant components to each other or, as usually phrased, that
gab and gab allow the lowering and rising of the indices.
Finally, these quantities determine the dot product of two
vectors [Eq. (33)] and, via G ' det½gab*, their cross product
as well [Eq. (40)]. Because of the central role played by the
quantities gab and gab, they have been given a special name:
the metric. In Sec. IV, we will see that the metric is indeed a
second-rank tensor.

IV. CHANGING BASES: TENSORS

We now wish to move from a given basis feag to another
basis that, in keeping with Shouten’s notation, will be
denoted as fea0 g. From the requirement that fea0 g be a basis,
it follows that each vector ea of the unprimed basis can be
written as a linear combination of the primed basis vectors

ea ¼ Rb0

a eb0 (41)

and, given feag as a basis, each vector ea0 of the primed basis
can be written as a linear combination of the unprimed basis
vectors

ea0 ¼ Rb
a0eb: (42)

This equation acts as the definition of the primed basis. Note
that we might think of Rb0

a (which is a 2-index quantity) as
the elements of a matrix. If so, we have to decide which
index refers to the rows and which to the columns; we freely
opt for the lower index for the rows and the upper for the
columns.

Inserting Eq. (42) into (41), we get ea ¼ Rb0
a ðRc

b0ecÞ
¼ ðRb0

a Rc
b0Þec, whereby

Rb0

a Rc
b0 ¼ dc

a; or ½Rb0

a *½R
b
a0 * ¼ I: (43)

The matrix ½Rb0
a * is invertible and its inverse is the matrix

½Rb
a0 *. It is crucial at this point to have no misunderstandings

about the notation: Rb0
a and Rb

a0 are matrix elements of differ-
ent matrices—in fact, they are inverse to each other—and it
is the position of the prime (on the lower or on the upper
index) that tells us that this is so. In particular, det½Rb0

a *
6¼ det½Rb

a0 * and these nonzero determinants are reciprocal to
each other.

Any vector can now be written as

A ' Aaea ' Aa0e
a0 ' Aa0ea0 ' Aaea; (44)
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where the equalities have been denoted as identities to stress
the objectivity character of the quantity we are dealing with.
Our task now is to find how to go from the direct and dual
bases (contravariant and covariant components) in the
unprimed system to the direct and dual bases (contravariant
and covariant components) in the primed system, and vice
versa. Equation (42) is the starting point as it defines the
primed basis (we assume the matrix R ' ½Rb

a0 * is given).
Equation (41) gives the unprimed direct basis from the
primed direct basis (requiring inversion of the matrix R).

The metric of the primed system is

ga0b0 ' ea0 # eb0 ¼ ðRc
a0ecÞ # ðRd

b0edÞ ¼ Rc
a0R

d
b0ðec # edÞ; (45)

or

ga0b0 ¼ Rc
a0R

d
b0gcd: (46)

From Eq. (41) and the last identity in Eq. (44), and making a
judicious use of our rules, we have

Aa0ea0 ' Aaea ¼ AaðRb0

a eb0Þ ¼ ðRb0

a AaÞeb0 ¼ ðRa0

b AbÞea0 ;

(47)

whereby

Aa0 ¼ Ra0

b Ab; (48)

which are the primed contravariant components from the
unprimed ones. To obtain the primed covariant components
from the unprimed ones, we may lower the index in the con-
travariant components by means of the metric. From Eqs.
(31), (43), (46), and (48), we obtain

Aa0 ¼ ga0c0A
c0 ¼ ðRb

a0R
d
c0gbdÞðRc0

e AeÞ ¼ Rb
a0gbdðRd

c0R
c0

e ÞA
e

¼ Rb
a0gbdðdd

e AeÞ ¼ Rb
a0ðgbdAdÞ; (49)

or

Aa0 ¼ Rb
a0Ab: (50)

Finally, we want to obtain the primed dual vectors from the
unprimed ones, which we find as

ea0 ¼ ga0c0ec0 ¼ ðRa0

b Rc0

d gbdÞðRe
c0eeÞ ¼ Ra0

b gbdðRc0

d Re
c0Þee

¼ Ra0

b gbdðde
deeÞ ¼ Ra0

b ðg
bdedÞ; (51)

or

ea0 ¼ Ra0

b eb: (52)

From this and Eq. (25) we see that

ga0b0 ¼ Ra0

c Rb0

d gcd: (53)

Let us now look at Eqs. (42), (48), (50), and (52). We see
that the covariant components transform exactly as does the
direct basis—compare Eqs. (50) and (42), where the transfor-
mation is governed by the matrix R ' ½Rb

a0 *—whereas the
contravariant-component transformation (48) is governed by
the matrix R(1 ' ½Ra0

b *. These components transform in a
manner “contrary” (so to speak) to that adopted by the direct

basis; in fact, they transform as does the dual basis as can be
seen by comparing Eqs. (48) and (52). This is the origin of
the names covariant and contravariant given to the compo-
nents labeled with indices in, respectively, the lower and
upper positions.

The dot product defined in Eq. (33) is indeed a scalar (an
invariant). For instance, from the last form of Eq. (33), we
have

Aa0B
a0 ¼ ðRc

a0AcÞðRa0

d BdÞ ¼ ðRc
a0R

a0

d ÞAcBd

¼ dc
dAcBd ¼ AcBc ¼ AaBa: (54)

Thus, when going from one basis to another in our 3D
space as dictated by the transformation (42), scalar quantities
are, by definition, invariant. Or, if we like, quantities that are
invariant under transformation (42) are legitimate one-
component physical quantities. On the other hand, the
components of a legitimate 3-component physical quantity
(vector) must transform according to either Eq. (48)
(contravariant components) or Eq. (50) (covariant
components).

Composing two vectors as in AaBa has yielded a scalar,
but two vectors might be composed as in AaBb, AaBb or
AaBb, producing 9-component quantities whose transforma-
tion rules, readily obtained from those of the single vectors,
guarantee the objectivity character we are requiring for a
physical quantity. However, such higher-rank quantities
need not be obtained by composing two vectors. We are then
led to define a second-rank tensor as a 9-component quantity
T whose covariant, contravariant, and mixed components
transform, respectively, as

Ta0b0 ¼ Rc
a0R

d
b0Tcd; (55)

Ta0b0 ¼ Ra0

c Rb0

d Tcd; (56)

Tb0

a0 ¼ Rc
a0R

b0

d Td
c : (57)

Equations (55)–(57) may also be considered as the defining
relations of, respectively, a ð0; 2Þ-type, ð2; 0Þ-type, and
ð1; 1Þ-type second-rank tensor. Contravariant and covariant
vectors are ð1; 0Þ-type and ð0; 1Þ-type first-rank tensors, and
scalars are ð0; 0Þ-type zero-rank tensors. Meanwhile, ðp; qÞ-
type tensors of rank ðpþ qÞ may be easily defined by gener-
alizing the relations (55)–(57).

From Eqs. (46) and (53) we see that gab and gab are the co-
variant and contravariant components of a second-rank ten-
sor, the metric tensor. We can obtain its mixed components
by either lowering one index of gab or raising one index of
gab; in both cases, we have gcagab ¼ dc

b, showing that the
metric-tensor mixed components are given by the Kronecker
delta db

a. To show that db
a is indeed a tensor we should check

that, according to Eq. (57), we have db0

a0 ¼ Rc
a0R

b0
d dd

c . Sure

enough, we find that Rc
a0ðRb0

d dd
cÞ ¼ Rc

a0R
b0
c ¼ db0

a0 . This result

also shows that the Kronecker delta db
a has the same compo-

nents in all coordinate systems, a property not shared by ei-

ther dab or dab. For instance, Rc
a0R

d
b0dcd ¼

P
c Rc

a0R
c
b0 , which,

in general, is not equal to da0b0 unless the transformation ma-
trix R ' ½Rb

a0 * happens to be orthogonal (its inverse is equal

to its transpose R(1 ¼ RT).
In an obvious way, a tensor may be multiplied by a real

number by multiplying each component by the number, and
tensors of the same type may be added by summing their
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homonymous components. Tensors of any type may be mul-
tiplied: the outer product of a tensor of type ðp; qÞ by a ten-
sor of type ðs; tÞ produces a tensor of type ðpþ s; qþ tÞ.
From a tensor of type ðp; qÞ, we can get another tensor, of
type ðp( 1; q( 1Þ, by setting two indices—one covariant
and the other contravariant—equal to each other, thereby
summing over the resulting repeated index; this operation is
called contraction. The outer product of two tensors fol-
lowed by a contraction is an inner product, and a fully con-
tracted inner product of two equal-rank tensors can be called
a scalar product, an example of which is the dot product in
Eq. (33). That the operations just defined produce new ten-
sors is easy to check from the defining transformation prop-
erties (55)–(57).

It is possible to test the tensor character of a multi-
component quantity also by using the quotient rule. To
explain this rule and how it works, let us start with a certain
notation. Given two tensors T1 and T2, let T1 + T2 denote
any resulting tensor arising from taking their outer product,
possibly followed by a contraction. Then let X be a multi-
component quantity whose tensor character (if any) we wish
to explore. The quotient rule says the following. By treating
X provisionally as a tensor and considering a specific prod-
uct X + A ' T between the components of X and A, as
defined above (i.e., a product that does not violate our Rules
0-3), if it can be shown that for any tensor A the quantity T
is also a tensor, then X is a tensor.

Before seeing how the rule arises, we can readily apply it.
Suppose we do not know that the metric was a tensor, but we
do know that it is a 2-index quantity such that, for any
tensor Ab, Eq. (31) holds so that gabAb is a tensor. Then by
the quotient rule, gab are the covariant components of a ten-
sor or, in short, gab is a tensor. Similarly, because Eq. (32)
holds for any tensor Ab, then gab is also a tensor. Moreover,
because we know that for any tensor Aa the quantity db

aAa

¼ Ab is also a tensor, we can deduce that db
a is a tensor. On

the other hand, to show from the quotient rule that dab is a
tensor we would need to show that, for instance, for any ten-
sor Aa the quantity dabAa also is a tensor Tb (in this case, a
covariant vector). However, from the definition of dab, we
have dabAa 6¼ Ab (as previously discussed, the equality
would hold only within orthonormal bases). Therefore, dab is
not a tensor.

The quotient rule should be applied with some care; the
key words in the rule’s statement are for any. Instead of
proving the rule, we shall see how the proof would
proceed in a case where it is not legitimate to invoke it,
thereby catching with one token both the reasoning to follow
for a proof and its pitfalls. Say we have proved that
XabAaAb ' T is a scalar (a zero-rank tensor) for any tensor
Aa. Then

Xa0b0A
a0Ab0 ¼ XcdAcAd ¼ XcdðRc

a0A
a0ÞðRd

b0A
b0Þ

¼ Rc
a0R

d
b0XcdAa0Ab0 ; (58)

where in the second equality we have used the tensor nature
of Aa. From the first and last terms of this result, it follows
that

ðXa0b0 ( Rc
a0R

d
b0XcdÞAa0Ab0 ¼ 0; (59)

supposedly true for any Aa. This circumstance, however,
does not allow us to infer that Xa0b0 ( Rc

a0R
d
b0Xcd ¼ 0, i.e., that

Xab is a tensor. This would be true if we had had an equation
such as ðXa0b0 ( Rc

a0R
d
b0XcdÞAa0b0 ¼ 0 holding for any Aab. But

AaAb is not any tensor—it is a special (a symmetric) tensor.
Therefore, from Eq. (59), we cannot infer that Xab is a
tensor.

A tensor is symmetric if it is invariant under the exchange
of two equal-variance (both upper or lower) indices, such as
Tab ¼ Tba, whereas a tensor is antisymmetric if it changes
sign under the exchange of two equal-variance indices, such
as Tab ¼ (Tba. The importance of these properties is due to
the fact that they hold in any coordinate system. If Tab

¼ 6 Tba then

Ta0b0 ¼ Rc
a0R

d
b0Tcd ¼ 6 Rc

a0R
d
b0Tdc ¼ 6 Rd

b0R
c
a0Tdc

¼ 6 Tb0a0 ; (60)

and similarly for two contravariant indices. From any tensor
with two equal-variance indices, such as Tab, we may con-
struct a symmetric and an antisymmetric tensor, namely
Tab 6 Tba. Likewise, any such tensor may be written as a
sum of a symmetric and an antisymmetric tensor as
Tab ¼ 1

2 ½ðTab þ TbaÞ þ ðTab ( TbaÞ*. Symmetry/antisymmetry
is not defined for two indices of different variance because in
this case the property would not be coordinate-independent.

V. FIELDS

A field is a function of the space coordinates (and possibly
of time as well). To represent an objectivity-preserving
physical quantity the field function must have a tensorial
character. Specifically, in our ordinary 3D space, it must be a
3r-component tensor field of rank r, with r ¼ 0; 1; 2; :::: a
ð0; 0Þ-type tensor (scalar field), ð1; 0Þ-type tensor (contravar-
iant vector field), ð0; 1Þ-type tensor (covariant vector field)
or, in general, a ðp; qÞ-type tensor field of rank r ¼ pþ q.

Let us then consider our ordinary Euclidean 3D space par-
ameterized by a set of arbitrary coordinates, which we shall
denote by x ' ðx1; x2; x3Þ. We assume that they are related to
the Cartesian coordinates—hereafter denoted by
x0 ' ðx10 ; x20 ; x30Þ—by an invertible relation, so that

xa0 ¼ xa0ðx1; x2; x3Þ ' xa0ðxÞ (61a)

and

xa ¼ xaðx10 ; x20 ; x30Þ ' xaðx0Þ: (61b)

The Jacobian determinants are nonzero

J ' det
@xa0

@xb

# $
' det½Ra0

b * 6¼ 0 (62a)

and

J(1 ' det
@xa

@xb0

# $
' det½Ra

b0 * 6¼ 0; (62b)

where we have set

@xa0

@xb
' Ra0

b and
@xa

@xb0
' Ra

b0 : (63)

These are elements of matrices inverse to each other
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Ra
b0R

b0

c ¼
X

b

@xa

@xb0
@xb0

@xc
¼ @xa

@xc
¼ da

c ; (64)

which is why we wrote the Jacobian as J(1 in Eq. (62b).
We now proceed to show how two bases of vectors

emerge from Eqs. (61). From Eq. (61a), upon fixing one
coordinate at a time, three surfaces (the coordinate surfaces)
are specified; by fixing xa ¼ xa

0, say, one specifies the surface
of the points of space with constant xa, whose parametric
equations are given by Eq. (61a) upon setting xa ¼ xa

0 (the
other two coordinates play the role of parameters). For
instance, the coordinate surfaces arising by parameterizing
the space with spherical polar coordinates are spheres cen-
tered at the origin, cones with the vertex at the origin, and
half-planes originating from the z-axis.

Similarly, upon fixing two coordinates at a time, xa ¼ xa
0

and xb ¼ xb
0, say, one specifies the points lying on both the

ath and bth coordinate surfaces, i.e., the points lying on their
intersection curve—a coordinate curve—whose parametric
equations are given by Eq. (61a) upon setting xa ¼ xa

0 and
xb ¼ xb

0 (the remaining coordinate plays the role of the
parameter).

Of course, upon fixing all three coordinates a single point
of space is specified. Each point is at the intersection of three
coordinate curves, whose tangent vectors at that point—read-
ily evaluated from the parametric equation of the curves—are

ea ¼
X

b

@xb0

@xa
eb0 ¼ Rb0

a eb0 : (65)

Here eb0 is the bth Cartesian basis vector and Eq. (63) has
been used. Recall that, being orthonormal, a Cartesian basis
is self-dual (eb0 ¼ eb0 ) and it is precisely this fact that allows
us to write Eq. (65) in a manner suitable to make use of our
Rule 0.

Are the vectors feag in Eq. (65) a basis? That is, does
Caea ¼ 0 imply Ca ¼ 0; 8a? The answer is yes; the ortho-
normal vectors fea0 g are a basis, whereby CaðRb0

a eb0Þ
¼ ðCaRb0

a Þeb0 ¼ 0 implies CaRb0
a ¼ 0; 8b. However, CaRb0

a
¼ 0 implies Ca ¼ 0; 8a because, by Eq. (62a), det½Rb0

a * 6¼ 0.
As seen above, the matrices whose elements are given in

Eq. (63) are inverses of each other, and using Eqs. (65), (41),
and (52), we could at once write the vectors dual to those in
Eq. (65). However, it is instructive to see how they emerge
from Eq. (61b) by computing, from each of them, the gradi-
ent vectors as prescribed by Eq. (9)

ea ' rxa ¼
X

b

@xa

@xb0
eb0 ¼ Ra

b0e
b0 : (66)

Here again, thanks to the fact that eb0 ¼ eb0 , we have written
the last term of Eq. (66) in a manner suitable for applying
Rule 0. Also, the left-hand side has been written in keeping
with Rule 3, although there is more to it than just the desire
of not breaking rules that, as appealing as they might look,
are arbitrary. Indeed, the vectors in Eqs. (65) and (66) are
dual to each other, as the notation chosen suggests. In fact,

ea # eb ¼ ðRa
c0e

c0Þ # ðRd0

b ed0Þ ¼ Ra
c0R

d0

b ðe
c0 # ed0Þ

¼ Ra
c0R

d0

b dc0

d0 ¼ Ra
c0R

c0

b ¼ da
b (67)

so that they satisfy Eq. (21), the defining equation of dual
vectors.

As promised, two bases have indeed emerged from the ar-
bitrary coordinate system x ' ðx1; x2; x3Þ: the basis feag,
defined at each point in space, of the vectors tangent to the
coordinate curves, and the basis feag, defined at each point
in space, of the vectors normal to the coordinate surfaces.
The components of the basis feag are referred to as contravar-
iant, whereas the components of the basis feag are referred to
as covariant. For instance, if AðxÞ ¼ AaðxÞea ¼ AaðxÞea is a
vector field, its contravariant and covariant components would
transform, respectively, as prescribed by Eqs. (48) and (50),
namely

Aa ¼ Ra
b0A

b0 (68)

and

Aa ¼ Rb0

a Ab0 : (69)

The tensor algebra of the preceding sections remains
unchanged, except that Ra

b0 and Rb0
a now have an explicit

expression, given by Eq. (63).
Which basis should be used? It just so happens that some

tensors are naturally expressed in one basis rather than in
another. For instance, taking the differential of Eq. (61b), we
have

dxa ¼
X

b

@xa

@xb0
dxb0 ' Ra

b0dxb0 : (70)

The differentials dxa do indeed transform as the components
of a contravariant vector. However, the differentials dxa0 are
the Cartesian components of the displacement vector so that
we may conclude that dxa are the contravariant components
of the displacement vector in any coordinate system:
dx ¼ dxaea.

Let us now consider a scalar field / ' /ðxÞ ¼ /ðx0Þ (the
equality arises from the definition of a scalar as an invariant
under coordinate transformations) and compute @a/ðxÞ,
where we denote @a ' @=@xa, to get

@a/ '
@/ðxÞ
@xa

¼ @/ðx
0Þ

@xa
¼
X

b

@/ðx0Þ
@xb0

@xb0

@xa
' Rb0

a @b0/:

(71)

Here, the second equality follows from the fact that / is a
scalar, the third from the chain rule, and the fourth from Eq.
(63). From Eq. (71), we have @a/ðxÞ ¼ Rb0

a @b0/ðx0Þ, which
tells us that the partial derivatives @a/ do transform as the
components of a covariant vector. However, from Eq. (9),
we have @b0/ ' ðr/Þb0 , and hence we may conclude that
@a/ are the covariant components of the gradient of the sca-
lar field / in any coordinate system:

r/ ' ðr/Þaea ¼ ð@a/Þea: (72)

The partial derivative of a scalar field with respect to any
coordinate component readily gives the homonymous covar-
iant component of the gradient of the field [this is the mean-
ing of the word “naturally” in the sentence above Eq. (70)].
Wishing to compute the contravariant components of the
gradient, Eq. (32) gives a recipe: ðr/Þa ¼ gabðr/Þb
¼ gab@b/, where gab are the contravariant components of the
metric tensor.
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In principle, the metric tensor may be evaluated from Eqs.
(61), (65), (66), (11), (14), and (25). An easier way to evalu-
ate it, however, is from the invariance of dx # dx. This is
gabdxadxb in arbitrary coordinates, whereas in Cartesian
coordinates it is

gb0c0dxb0dxc0 ¼ db0c0dxb0dxc0 ¼
X

c

dxc0dxc0

¼
X

c

ðRc0

a dxbÞðRc0

b dxbÞ

¼
X

c

Rc0

a Rc0

b

 !

dxadxb: (73)

By comparison with gabdxadxb we see that

gab ¼
X

c

Rc0

a Rc0

b ; (74)

directly computable from Eqs. (61a) and (63). For instance,
for the well-known spherical polar coordinates—for which
we replace ðx1; x2; x3Þ and ðx10 ; x20 ; x30Þ by the more common
ðr; #;uÞ and ðx; y; zÞ—one would get gabdxadxb ¼ ðdrÞ2
þr2ðd#Þ2 þ r2sin2#ðduÞ2, whereby the metric is the diago-
nal matrix ½gab* ¼ diag½1; r2; r2sin2#*.

The partial derivatives of a scalar field @a/ are then the
(covariant) components of a (first-rank) tensor (the gradient
of the field), which gives valuable (and, most importantly,
coordinate-independent or objectivity-preserving) informa-
tion on the spatial variation rate of the field. The question nat-
urally arises as to how to secure such important information
on the components of a vector field. Do the partial derivatives
@bAa or @bAa of the components of a vector field, or the sec-
ond partial derivatives @ba/ ' @b@a/ of a scalar field, have a
similar appeal as coordinate-independent, objectivity-preserv-
ing quantities? In our language, are @bAa, @bAa, or @ba/
(second-rank) tensors? This is an easy question to answer
because we have just to check Eqs. (55)–(57). For instance,

@b0Aa0 ¼ @b0ðRc
a0AcÞ ¼ Rc

a0ð@b0AcÞ þ Ac@b0R
c
a0

¼ Rc
a0ðR

d
b0@dAcÞ þ AcRc

b0a0 ¼ Rd
b0R

c
a0@dAc þ AcRc

b0a0 ;

(75a)

where we have used the chain rule in the second equality and
have set @b0Rc

a0 ' Rc
b0a0 . Due to the extra term AcRc

b0a0 , Eq.
(75a) shows that @b0Aa0 6¼ Rd

b0R
c
a0@dAc so that @bAa is not a

tensor. Similar reasoning, and reference to Eq. (71), shows
that @ba/ ' @bð@a/Þ is not a tensor either, and nor is @bAa:

@b0A
a0 ¼ @b0ðRa0

c AcÞ ¼ Ra0

c ð@b0A
cÞ þ Ac@b0R

a0

c

¼ Ra0

c ðR
d
b0@dAcÞ þ AcRd

b0@dRa0

c

¼ Rd
b0R

a0

c @dAc þ AcRd
b0R

a0

dc: (75b)

Although @ba/ ' @bð@a/Þ and @bAa turn out not to be ten-
sors, we still have the desire, if not the need, of a physical
quantity providing coordinate-independent information on
the rate of spatial variation of arbitrary-rank tensors, not just
scalars.

Let us compute the bth spatial derivative of a vector, as
given by Eq. (28), keeping in mind that in non-Cartesian
coordinates the basis vectors are not constant:

@bA ¼ @bðAcecÞ ¼ ð@bAcÞec þ Acð@becÞ: (76)

In the last term, @bec may be rewritten as a linear combina-
tion of the basis vectors to give

@bec ¼ ð@becÞaea ¼ ½ea # ð@becÞ*ea ' Ca
bcea; (77)

where we have used Eq. (19) in the second equality and
introduced the Christoffel symbol (of the second kind) as

Ca
bc ' ea # ð@becÞ: (78)

This is just the ath contravariant component of @bec and it is
symmetric under the exchange of the lower indices

@bec ¼ @bðRa0

c ea0Þ ¼ ð@bRa0

c Þea0 ¼ Ra0

bcea0 ¼ Ra0

cbea0

¼ ð@cRa0

b Þea0 ¼ @cðRa0

b ea0Þ ¼ @ceb; (79)

where denoting by primes a Cartesian coordinate system (in
which the basis vectors are constant), @bec0 ¼ 0, and use has
been made of the fact that Ra0

bc ¼ Ra0
cb (the mixed second par-

tial derivatives may be exchanged). Therefore, we have

@bec ¼ @ceb (80)

and

Ca
bc ¼ Ca

cb: (81)

Equation (76) can then be written as

@bA ¼ ð@bAcÞec þCa
bcAcea ¼ ð@bAa þCa

bcAcÞea ' Aa
;bea;

(82)

where we have defined the covariant derivative of the contra-
variant components of the vector A (or more concisely, the
covariant derivative of the contravariant vector Aa) as

Aa
;b ' @bAa þ Ca

bcAc; (83)

where the covariant derivative is denoted by a subscript
semicolon. Notice that, rather than Eq. (76), we could have
instead written

@bA ¼ @bðAcecÞ ¼ ð@bAcÞec þ Acð@becÞ (84)

with

@bec ¼ ð@becÞaea ¼ ½ea # ð@becÞ*ea: (85)

However,

ea #ð@becÞ¼@bðea #ecÞ(ec #@bea¼@bd
c
a(ec #@bea¼(Cc

ba;

(86)

where we have used Eq. (21) in the second equality and Eq.
(78) in the last. Equation (84) finally becomes

@bA¼ ð@bAcÞec(AcCc
baea ¼ ð@bAa(Cc

baAcÞea ' Aa;bea;

(87)

where we have defined the covariant derivative of the covari-
ant (components of the) vector Aa as

Aa;b ' @bAa ( Cc
baAc: (88)
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To compute the covariant derivatives, the needed
Christoffel symbols are provided by the precious metric

Ca
bc ¼

1

2
ðCa

bc þ Ca
cbÞ ¼

1

2
½ea # ð@becÞ þ ea # ð@cebÞ*

¼ 1

2
½ðgadedÞ # ð@becÞ þ ðgadedÞ # ð@cebÞ*

¼ 1

2
gad½@bðed # ecÞ þ @cðed # ebÞ ( ec # ð@bedÞ

( eb # ð@cedÞ*

¼ 1

2
gad½@bgdc þ @cgdb ( ec # ð@debÞ ( eb # ð@decÞ*

¼ 1

2
gad½@bgdc þ @cgdb ( @dðeb # ecÞ*

¼ 1

2
gad½@bgdc þ @cgdb ( @dgbc*; (89)

where, along with the derivation, we have used, in order,
Eqs. (81), (78), (27), (11), (80), and (11) again. The impor-
tant relation obtained is

Ca
bc ¼

1

2
gad½@bgdc þ @cgdb ( @dgbc*: (90)

From Eqs. (82) and (87), we then have

@bA ¼ Aa
;bea ¼ Aa;bea; (91)

where the covariant derivatives are given by Eqs. (83) and (88)
and the Christoffel symbol (of the second kind) by Eq. (90).

As we have already seen, the partial-derivative term in
Eqs. (83) and (88) is not a tensor and neither is the other
term because the Christoffel symbols are not tensors.
However, the combination of the two terms does make the
covariant derivative a tensor, as we will soon see. To demon-
strate that the Christoffel symbols are not tensors, it is con-
venient to start by introducing the Christoffel symbol of the
first kind (please pay attention to the relative position of the
indices), defined by

Cabc ' gadCd
bc ¼

1

2
gadgde½@bgec þ @cgeb ( @egbc*

¼ 1

2
de

a½@bgec þ @cgeb ( @egbc*; (92)

which gives

Cabc ' gadCd
bc ¼

1

2
½@bgac þ @cgab ( @agbc*: (93)

From Cabc ' gadCd
bc, we have gaeCabc ¼ gaegadCd

bc ¼ de
dC

d
bc

¼ Ce
bc, or

Ca
bc ¼ gadCdbc: (94)

Incidentally, it should be clear from Eqs. (90) and (93) that
all components of the Christoffel symbols are equal to zero
in Cartesian coordinates, where the metric-tensor compo-
nents are given by the (constant) Kronecker delta.

The transformation rule for the Christoffel symbol of the
first kind is obtained from Eqs. (93) and (46) as

2Ca0b0c0 ¼ @b0ga0c0 þ @c0ga0b0 ( @a0gb0c0 ¼ @b0ðRd
a0R

e
c0gdeÞ þ @c0ðRd

a0R
e
b0gdeÞ ( @a0ðRd

b0R
e
c0gdeÞ

¼ ðRd
a0R

e
c0Þ@b0gde þ ðRd

a0R
e
b0Þ@c0gde ( ðRd

b0R
e
c0Þ@a0gde þ gde½@b0ðRd

a0R
e
c0Þ þ @c0ðRd

a0R
e
b0Þ ( @a0ðRd

b0R
e
c0Þ*

¼ Rd
a0R

e
c0R

f
b0@f gde þ Rd

a0R
e
b0R

f
c0@f gde ( Rd

b0R
e
c0R

f
a0@f gde

þgde½ðRd
b0a0R

e
c0 þ Rd

a0R
e
b0c0Þ þ ðR

d
c0a0R

e
b0 þ Rd

a0R
e
c0b0Þ ( ðR

d
a0b0R

e
c0 þ Rd

b0R
e
a0c0Þ*

¼ Rd
a0R

e
b0R

f
c0ð@egdf þ @f gde ( @dgef Þ þ gdeð2Rd

a0R
e
b0c0 þ Rd

c0a0R
e
b0 ( Rd

b0R
e
a0c0Þ

¼ 2Rd
a0R

e
b0R

f
c0Cdef þ 2gdeRd

a0R
e
b0c0 : (95)

Here, we point out the steps in the next-to-last equality, where
extensive use of Rule 2 has been made, and in the last equality,
where the cancellation of the last two terms occurs because we
can freely exchange the dummy indices d and e so that the
symmetry of gde allows the cancellation. We then see that

Ca0b0c0 ¼ Rd
a0R

e
b0R

f
c0Cdef þ gdeRd

a0R
e
b0c0 : (96)

The transformation rule for the Christoffel symbol of the sec-
ond kind follows from Eqs. (94), (96), and (53) to give

Ca0

b0c0 ¼ ga0d0Cd0b0c0 ¼ ðRa0

e Rd0

f gef ÞðRp
d0R

q
b0R

r
c0Cpqr þ gpqRp

d0R
q
b0c0Þ ¼ Ra0

e Rq
b0R

r
c0ðR

d0

f Rp
d0Þg

ef Cpqr þ gef gpqRa0

e ðR
d0

f Rp
d0ÞR

q
b0c0

¼ Ra0

e Rq
b0R

r
c0ðd

p
f gef ÞCpqr þ gef ðgpqd

p
f ÞR

a0

e Rq
b0c0 ¼ Ra0

e Rq
b0R

r
c0ðg

epCpqrÞ þ ðgef gf qÞRa0

e Rq
b0c0

¼ Ra0

e Rq
b0R

r
c0C

e
qr þ ðd

e
qRa0

e ÞR
q
b0c0 ¼ Ra0

e Rq
b0R

r
c0C

e
qr þ Ra0

q Rq
b0c0 ; (97)

or

Ca0

b0c0 ¼ Ra0

d Re
b0R

f
c0C

d
ef þ Ra0

d Rd
b0c0 ¼ Ra0

d Re
b0R

f
c0C

d
ef ( Ra0

deRd
b0R

e
c0 ; (98)

where the last equality follows from the fact that
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Ra0

d Rd
b0c0 ¼ Ra0

d @b0R
d
c0 ¼ @b0ðRa0

d Rd
c0Þ ( Rd

c0@b0R
a0

d

¼ @b0d
a0

c0 ( Rd
c0ðR

e
b0@eRa0

d Þ
¼ (Rd

c0R
e
b0R

a0

ed ¼ (Ra0

edRe
b0R

d
c0 ¼ (Ra0

deRd
b0R

e
c0 :

(99)

We then see that, because of the presence of the second terms
in Eqs. (96) and (98), the Christoffel symbols do not transform
as a tensor. As noted, the partial derivatives do not transform
as a tensor either. However, their combination in the covariant
derivatives (83) and (88) does transform as a tensor

Aa0;b0 ' @b0Aa0 ( Cc0

b0a0Ac0 ¼ ðRd
b0R

e
a0@dAe þ AeRe

b0a0Þ ( ðR
d
b0R

e
a0R

c0

f Cf
de þ Rc0

e Re
b0a0ÞR

p
c0Ap

¼ Rd
b0R

e
a0ð@dAe ( Cf

deðR
c0

f Rp
c0ÞApÞ þ AeRe

b0a0 ( ðR
c0

e Rp
c0ÞApRe

b0a0 ¼ Rd
b0R

e
a0ð@dAe ( Cf

ded
p
f ApÞ þ AeRe

b0a0 ( dp
eApRe

b0a0

¼ Rd
b0R

e
a0ð@dAe ( Cf

deAf Þ þ AeRe
b0a0 ( AeRe

b0a0 ¼ Rd
b0R

e
a0Ad;e; (100)

where Eqs. (88), (75a), (50), and the second equality in Eq. (98) have been used. Similarly,

Aa0

;b0 ' @b0A
a0 þ Ca0

b0c0A
c0 ¼ ðRd

b0R
a0

e @dAe þ AeRd
b0R

a0

deÞ þ ðR
a0

e Rd
b0R

f
c0C

e
df ( Ra0

deRd
b0R

e
c0ÞR

c0

p Ap

¼ Rd
b0R

a0

e ð@dAe þ Rf
c0C

e
df R

c0

p ApÞ þ AeRd
b0R

a0

de ( Ra0

deRd
b0ðR

e
c0R

c0

p ÞA
p

¼ Rd
b0R

a0

e Ae
;d þ AeRd

b0R
a0

de ( Ra0

deRd
b0d

e
pAp ¼ Rd

b0R
a0

e Ae
;d þ AeRd

b0R
a0

de ( Ra0

deRd
b0A

e ¼ Rd
b0R

a0

e Ae
;d; (101)

where Eqs. (83), (75b), (48), and the first equality in Eq. (98)
have been used.

It is worth mentioning that the covariant derivative could
have been obtained in the following alternative way, where
we only sketch the procedure and leave the details to the
reader. Starting from the first equality in Eq. (98), solve for
Rd

b0c0 and insert the result into Eq. (75a). Rearranging the
equation obtained, Eq. (101) follows, showing that the covar-
iant derivative defined in Eq. (88) is indeed a tensor.
Similarly, starting from the second equality in Eq. (98), solve
for Ra0

de and insert the result into Eq. (75b). Rearranging the
equation obtained, Eq. (100) follows, showing that the covar-
iant derivative defined in Eq. (83) is indeed a tensor.

Covariant derivatives of higher-rank tensors are readily
written. For instance

Aab
;c ' @cAab þ Ca

cdAdb þ Cb
cdAad; (102)

Aab;c ' @cAab ( Cd
acAdb ( Cd

adAad; (103)

and

Ab
a;c ' @cAb

a þ Cb
cdAd

a ( Cd
acAb

d; (104)

with a scheme that should be self-evident. Just recall that the
sign is positive when computing the covariant derivative of a
contravariant component and negative when computing the
covariant derivative of a covariant component. Rules 1–3
automatically take care of the indices and if any rule is bro-
ken there is a mistake. (Regrettably it does not work the
other way—satisfying the rules does not guarantee mistake-
free algebra.)

The covariant derivative of a product follows the same
rules as the ordinary derivative. For instance

ðAaBbÞ;c ¼ Aa;cBb þ Bb
;cAa; (105)

as can be easily verified by applying Eq. (104) to AaBb. (A
word of caution: unlike the case of ordinary differentiation,

where the mixed second derivatives may be exchanged
@bcAa ¼ @cbAa, in covariant differentiation the order is im-
portant, Aa

;bc 6¼ Aa
;cb).

The covariant derivative of the metric is zero. Indeed,

gab;c ¼ @cgab ( Cd
acgdb ( Cd

bcgad ¼ @cgab ( Cbac ( Cabc

¼ @cgab (
1

2
½ð@agbc þ @cgab ( @bgacÞ

þ ð@bgac þ @cgab ( @agbcÞ* ¼ 0; (106)

where Eqs. (103) and (93) have been used. Likewise, from
Eq. (104),

db
a;c ¼ @cd

b
a þ Cb

cdd
d
a ( Cd

acd
b
d ¼ Cb

ca ( Cb
ac ¼ 0; (107)

and from Eqs. (105) and (107),

0 ¼ db
a;c ¼ ðgadgdbÞ;c ¼ gad;cgdb þ gdb

;c gad ¼ gdb
;cgad;

(108)

whereby gab
;c ¼ 0. The metric-tensor components are

“transparent” to covariant differentiation, a result known as
the Ricci theorem.

Now that we have a new tensor—the covariant derivative
of a field—we may treat it as such. For instance, the second-
rank tensor in Eq. (83) may be contracted to a scalar, as
explained in Sec. IV. If we do so, we obtain Aa

;a ¼ @aAa

þCa
acAc. We have already noted that in Cartesian coordinates

the Christoffel symbols are zero, and the covariant and con-
travariant components of a vector are equal to each other.
Thus, in Cartesian coordinates, the above contraction
becomes Aa

;a ¼ @aAa ¼
P

a @aAa. But this is precisely Eq.
(7), the definition of the divergence of a vector, which is
then a scalar (an invariant). We are then led to define the
divergence of a vector in an arbitrary coordinate system as

r # A ' Aa
;a ' @aAa þ Ca

acAc: (109)
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Notice that the divergence of a vector is defined in terms
of its contravariant components. If the covariant components
are available, then r # A ' Aa

;a ¼ ðgabAbÞ;a ¼ gabAb;a; we
define the divergence of (the components of) a covariant vec-
tor to be the divergence of the associated contravariant (com-
ponents of the) vector.

Remarkably, to evaluate the divergence of a vector, it is
not necessary to compute the Christoffel symbols. In fact,
the ones appearing in Eq. (109) are

Ca
ac ¼

1

2
gad½@agdc þ @cgda ( @dgac* ¼

1

2
gad@cgad;

(110)

where the cancellation between the first and third terms on
the right-hand side of the first equality arises upon exchang-
ing the dummy indices a and d and taking advantage of the
symmetry of the metric tensor. However, for the matrix
whose elements are gad, we may write

½gad* ¼ ½gda* ¼ ½gda*(1 ¼ Gad

G

# $
; (111)

where the first equality follows from the symmetry of the
metric, the second from Eq. (14), and the last equality—in
which Gad and G are, respectively, the cofactor of the ele-
ment gad and the determinant of the matrix ½gab*—follows
from the definition of the inverse of a matrix. Then for each
element of the matrix ½gab* we can write gab ¼ Gab=G.
However, from the definition of a determinant we also have
G ' gabGab, whereby @G=@gad ¼ Gad and gad ¼ Gad=G
¼ ð1=GÞð@G=@gadÞ. Equation (110) becomes

Ca
ac ¼

1

2
gad@cgad ¼

1

2G

@G

@gad

@gad

@xc
¼ 1

2G

@G

@xc

¼ 1ffiffiffiffi
G
p @

ffiffiffiffi
G
p

@xc
' @cð

ffiffiffiffi
G
p
Þffiffiffiffi

G
p ; (112)

which can be inserted into Eq. (109) to give

r #A ' Aa
;a ' @aAa þ @að

ffiffiffiffi
G
p
Þffiffiffiffi

G
p Aa ¼ @að

ffiffiffiffi
G
p

AaÞffiffiffiffi
G
p : (113)

This is our final, and most general, expression for the diver-
gence of a vector field, applicable in any coordinate system.
Needless to say, we may define divergences of a higher-rank
tensor by taking the covariant derivative with respect to the
ath coordinate of the bth contravariant component and con-
tracting with respect to the indices a and b.

The Laplacian of a scalar field / ¼ /ðxÞ is defined as the
divergence of its gradient [see Eq. (10)]. From Eqs. (72) and
(113), we have

D/ ' r #r/ ¼ @a½
ffiffiffiffi
G
p
ðr/Þa*ffiffiffiffi
G
p ¼ @a½

ffiffiffiffi
G
p

gabðr/Þb*ffiffiffiffi
G
p ;

(114)

or

D/ ' r #r/ ¼ @a½
ffiffiffiffi
G
p

gab@b/*ffiffiffiffi
G
p ; (115)

which is the general expression, applicable in any coordinate
system, for the Laplacian of a scalar field.

Finally, as explained at the end of Sec. IV, from a covariant
second-rank tensor we can construct an antisymmetric tensor
(the one constructed from Aa;b would be Aa;b ( Ab;a, or one
proportional to this). However, from Eq. (88), we have Aa;b (
Ab;a ¼ @bAa ( @aAb because the terms containing the
Christoffel symbol cancel. Thus, even though the partial
derivatives of a vector are not tensors (in fact, this is precisely
what has led us to the definition of the covariant derivative),
their antisymmetric difference is a tensor. A 9-component
antisymmetric tensor has only 3 independent components, and
this is so in any coordinate system (because antisymmetry is
preserved). These three components may then be viewed as
the components of a vector that, in the case of Aa;b ( Ab;a,
turn out to be proportional precisely to the curl of the vector
A. This quantity is defined as the “cross product” between the
gradient operator and the vector A [as in Eq. (40)]

r&A¼ 1ffiffiffiffi
G
p det

e1 e2 e3

@1 @2 @3

A1 A2 A3

2

4

3

5¼ 1ffiffiffiffi
G
p eabc@aAbec: (116)

VI. ORTHOGONAL COORDINATES

Geometrically, orthogonal coordinates have the property
that surface coordinates intersect as normal to each other,
and curve coordinates do so as well. The metric matrices are
diagonal,

½gab* ¼ diag½g11; g22; g33* ' diag½h2
ð1Þ; h

2
ð2Þ; h

2
ð3Þ*; (117)

with the metric coefficients defined by

hðaÞ '
ffiffiffiffiffiffi
gaa
p ¼ 1ffiffiffiffiffiffi

gaa
p ; (118)

where the second equality follows from the inverse of a diag-
onal matrix. In orthogonal coordinates, the lengths of the
coordinate basis vectors are given by

ffiffiffiffiffiffiffiffiffiffiffiffi
ea # ea
p ¼ ffiffiffiffiffiffi

gaa
p ¼ hðaÞ

and
ffiffiffiffiffiffiffiffiffiffiffiffi
ea # ea
p

¼
ffiffiffiffiffiffi
gaa
p

¼ h(1
ðaÞ, and the coordinate basis vectors

themselves may be expressed as ea ¼ hðaÞêa and ea ¼ h(1
ðaÞê

a,
where êa ¼ êa—these basis vectors are an orthonormal set.
We have written them in a manner to fulfil our Rule 3 and
have inserted within parentheses the metric-coefficient label
to remind us—in case of unlikely doubts—that no sum is
involved over that index.

Any vector can then be written as

A ¼ Aaea ¼ hðaÞA
aêa ¼ ~A

a
êa ¼ Aaea ¼ h(1

ðaÞAaêa ¼ ~Aaêa;

(119)

where

~A
a ¼ ~Aa ¼ hðaÞA

a ¼ h(1
ðaÞAa (120)

are the physical components, often preferred by physicists
because they have the same physical dimensions of the quan-
tity considered and because they are relative to an orthonor-
mal basis. For instance, in terms of its physical components,
the gradient of a scalar field is then

r/ ¼ 1

hðaÞ
@a/

% &
êa: (121)
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Calculations should be performed using covariant and con-
travariant components, changing into physical components
only at the end, if these are preferred.

In an orthogonal coordinate system, the Christoffel
symbols take a simpler form. From Eqs. (90) and (118), we
have

Ca
bc ¼ 1

2
gad½@bgdc þ @cgdb ( @dgbc*

¼ 1

2h2
ðaÞ

dad½@bgdc þ @cgdb ( @dgbc*

¼ 1

2h2
ðaÞ
½@bgac þ @cgab ( @agbc*: (122)

We consider here the following separate cases, which are
easily computed from Eq. (122):

(1) All 6 Christoffel symbols with a 6¼ b 6¼ c 6¼ a are zero,
because all relevant metric tensor elements are zero:
Ca

bc ¼ 0.
(2) The 6 Christoffel symbols with a 6¼ b ¼ c are given by

Ca
bb ¼ (ðhðbÞ=h2

ðaÞÞ@ahðbÞ.

(3) The 12 Christoffel symbols with a ¼ b 6¼ c are given by
Ca

ab ¼ @bhðaÞ=hðaÞ (no sum over a!).
(4) The 3 Christoffel symbols with a ¼ b ¼ c are given by

Ca
aa ¼ @ahðaÞ=hðaÞ (no sum over a!).

For instance, for spherical polar coordinates whose metric
is given in the example below Eq. (74), the metric coeffi-
cients, from Eq. (117), are hð1Þ ¼ 1, hð2Þ ¼ r, hð3Þ ¼ r sin#,
and the 27 Christoffel symbols, as computed from the rela-
tions above, are C1

22 ¼ (r, C1
33 ¼ (r sin2#, C2

12 ¼ C2
21 ¼

C3
13 ¼ C3

31 ¼ 1=r, C2
33 ¼ (sin# cos#, C3

23 ¼ C3
32 ¼ cot#;

the other 18 symbols are all equal to zero.
The divergence of a vector field in orthogonal coordinates

is obtained from Eq. (113) by setting
ffiffiffiffi
G
p
'

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½gab*

p

¼ hð1Þhð2Þhð3Þ. If the vector field is given in terms of its phys-
ical components, then from Eqs. (113) and (120) its diver-
gence is

r # A ¼ 1

hð1Þhð2Þhð3Þ
@1

'
hð2Þhð3Þ ~A1

(
þ @2

'
hð1Þhð3Þ ~A2

(h

þ @3

'
hð1Þhð2Þ ~A3

(i
: (123)

Likewise, the Laplacian of a scalar field is given by
Eq. (115); in orthogonal coordinates, this equation simplifies
further to

D/ ¼ 1

hð1Þhð2Þhð3Þ
@1

hð2Þhð3Þ
hð1Þ

@1/
% &

þ @2

hð1Þhð3Þ
hð2Þ

@2/
% &#

þ @3

hð1Þhð2Þ
hð3Þ

@3/
% &$

: (124)

As for the curl of a vector field, from Eqs. (116), (118), and
(120), we have

r& A ¼ 1

hð1Þhð2Þhð3Þ
det

hð1Þê1 hð2Þê2 hð3Þê3

@1 @2 @3

hð1Þ ~A1 hð2Þ ~A2 hð3Þ ~A3

2

4

3

5:

(125)

We have therefore come back, after a journey along the
path of tensor calculus, to expressions—Eqs. (121) and
(123)–(125)—that our readers might be familiar with; a good
place, as any, to stop.

VII. CONCLUSIONS

With the background from this guide, the reader is ready
to tackle many applications, such as the theory of elastic
bodies, involving tensors of any rank in any coordinate sys-
tem. For instance, the equations in the last paragraph of Sec.
II regarding the stress tensor have been written in Cartesian
coordinates. If a different coordinate system were considered
(because the geometrical symmetry of the material would
advise us to do so), we have here learned that (i) we must
deal with two types of components and (ii) we must write
the divergence as the contraction of a covariant derivative.
The reader who has followed the paper up to now knows
how to write the above equations, namely Fa ¼

Ð
V dV/a

¼
Ð

V rb
a;bdV ¼

Ð
S rb

anbds. In other words, we see that the
stress tensor emerges naturally as a mixed second-rank ten-
sor, exactly as the displacement and the gradient emerged
naturally as contravariant and covariant first-rank tensors.

Is this the end of the story? Well, we started by saying that
we live in a Euclidean 3D space with an invariant distance
given by ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2. That was fine. However,
we also live in a space that is neither 3D nor Euclidean.
Rather, we live in a 4D space-time, where the invariant dis-
tance (the interval) is ðcdtÞ2 ( ðdx1Þ2 ( ðdx2Þ2 ( ðdx3Þ2, in
which—by a comparison similar to that made below Eq. (74)
to obtain the spherical-polar-coordinate metric—the reader
will recognize that the metric is gab ¼ diag½1;(1;(1;(1*
¼ gab. The objectivity-preserving quantities are then 4r-com-
ponent quantities, and the metric is not Euclidean. But these
generalizations should not pose special problems. More sur-
prises would come upon introducing gravity into the picture,
but that is a topic we are not broaching here. The readers are
now, we hope, well equipped to go into the more modern
coordinate-free formulation,22 for which Jeevanjee’s book8

provides an introduction, and Schutz’s book is an excellent
follow-up.23
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