[9.3] - Projections \& dot product
Read section 9.3 in the textbook and answer these questions.

1. For the two vectors shown, draw the vector projection of $\overrightarrow{\mathbf{b}}$ onto $\overrightarrow{\mathbf{a}}$.

2. For the same two vectors, draw the vector p projection of $\overrightarrow{\mathbf{a}}$ onto $\overrightarrow{\mathbf{b}}$.

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=1^{2}+0+0=1 \quad \vec{a} \cdot \vec{b}=a b \cos \theta \Rightarrow \cos (\theta)=\frac{\vec{a} \cdot \vec{b}}{a b}=\frac{1}{\sqrt{2} \sqrt{2}}=\frac{1}{2} \quad \arccos \frac{1}{2}=60^{\circ} \\
& |\vec{a}|=a=\sqrt{2}=b
\end{aligned}
$$

4. Suppose that $\overrightarrow{\mathbf{a}} \neq 0$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}$. This means that $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ have the same projection onto $\overrightarrow{\mathbf{a}}$. Does this automatically mean that $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}}$?

Consider $\overrightarrow{\mathbf{a}}=\langle 1,2\rangle$ and $\overrightarrow{\mathbf{b}}=\langle 2,1\rangle$. Show that the answer to the question above is "no", by finding a vector $\overrightarrow{\mathbf{c}}$ which is not equal to $\overrightarrow{\mathbf{b}}$, but never the less satisfies

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=\langle 1,2\rangle \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}} \cdot\langle 2,1\rangle=1 \cdot 2+2 \cdot 1=4=\vec{a} \cdot \vec{c}=\langle 1,2\rangle \cdot\left\langle c_{x}, c_{y}\right\rangle \\
& 4=c_{x}+2 c_{y} \\
& \text { Many possibilities! } \vec{c}=\left\langle\frac{4}{3}, \frac{4}{3}\right\rangle \text { or }\langle 0,2\rangle \text { or }\langle 4,0\rangle \text { or.... }
\end{aligned}
$$

