[13.4] - Green's theorem problems

1. Let C be the triangle path $(0,0) \rightarrow(1,1) \rightarrow(0,1) \rightarrow(0,0)$.

Then $\int_{C} 2 y d x-3 x d y$ equals ??

The orientation of the path is negative. The vector integral around the outside is equal to the positive orientation:

$$
\begin{align*}
\oint_{-C}(-2 y d x+3 x d y) & = \\
\oint P d x+Q d y & =\iint\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \tag{1}\\
& =\iint(3-(-2))=5 \iint d A=5 * \frac{1}{2} .
\end{align*}
$$

2. Use Green's Theorem to calculate $\oint_{C}(y-x) d x+(2 x-y) d y$ where C is the boundary of the rectangle shown.

3. Compute $\oint_{C}\left(-\frac{x y^{4}}{2}\right) d x+\left(x^{2} y^{3}\right) d y$ where C is the curve shown below.

4. Use Green's Theorem to evaluate the following line integrals:
a. $\oint_{C}\left(\arctan \left(x^{2}\right)-y^{2}\right) d x+\left(x^{2} y-\ln \left(y^{2}+1\right)\right) d y$ where C is the semicircle $y=\sqrt{4-x^{2}}$ together with the line segment $(-2,0) \rightarrow(2,0)$ as shown.

b. $\oint_{C} x y d x+\left(x^{2}+y^{2}\right) d y$ where C is this triangle.

5. Consider the non-closed curve $C,(3,0) \rightarrow(0,2) \rightarrow(1,0)$ as shown. Figure out a way to use Green's Theorem to help you compute $\int_{C}(x+y) d x+(3 x-y) d y$.

Hint:

