Math 213 -**Tabular Data**

Wave Heights on the Open Sea

The wave heights h in the open sea depend on the speed v of the wind (knots) and the length of time t that the wind has been blowing at that speed (hours). Values for the function h = f(v,t)1 t=15 , t=20 are in the following table

are in the following table.			¥ - · · · (•			20		
	v∖t	5	10	15	20	30	40	50
	10	2	2	2	2	2	2	2
	15	4	4	5	5	5	5	5
	20	5	7	8	8	9	9	9
	30	9	13	16	(17	18	19	19
-40 _	40	14	21	25	28	31	33	33
	50	19	29	36	40	45	48	50
	60	24	37	47	54	62	67	69

Questions:

Va

1. What is the value of f(40,15)? What is its meaning? If a 40-knot wind has been blowing for 15 hours, the ocean waves will have a height of 25 (feet?) h (40,75) = 25 (feet?)

2. What is the meanings of the function h = f(30,t)? h = f(v,30)?

f(30,t) is the height of waves as a function of t (how long the wind has been blowing at 30 knots).

3. Estimate the values of $\frac{\partial f}{\partial v}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and interpret their meanings. When the wind is blowing at $\frac{\partial f}{\partial v}(40,20)$ and interpret their meanings. When the wind is blowing at $\frac{\partial f}{\partial v}(40,20)$ and interpret their meanings. When the wind is blowing at $\frac{\partial f}{\partial v}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and interpret their meanings. When the wind is blowing at $\frac{\partial f}{\partial v}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and interpret their meanings. When the wind is blowing at $\frac{\partial f}{\partial v}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and interpret their meanings. When the wind is blowing at $\frac{\partial f}{\partial v}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and interpret their meanings. When the wind is blowing at $\frac{\partial f}{\partial v}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and interpret their meanings. When the wind is blowing at $\frac{\partial f}{\partial v}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and interpret their meanings. When the wind is blowing at $\frac{\partial f}{\partial v}(40,20)$ and $\frac{\partial f}{\partial t}(40,20)$ and $\frac{\partial f}{$ = 0.4 st/hr blows. increase in wind speed, the height of waves increases by 1.15 foot. 4. Find a linear approximation to the wave height function when v is near 40 knots and t is near

20 hours. (Round the numerical coefficients to two decimal places).

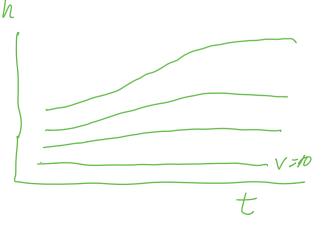
$$h(v,t) = 28 + 1.15(v-40) + 0.4(2-20)$$

$$h(40,20) = \frac{3h}{2v} \left[(40,20) + \frac{3h}{2t} \right] (40,20)$$

5. Using the linear approximation, estimate the wave heights when the wind has been blowing for 24 hours at 43 knots. (Round the answer to two decimal places).

$$h(43,24) = 28 + 15(3) + 0.4(4) = 33.05 \quad (f = e^{-f})$$

6. What do you think is the $\lim_{t \to \infty} \frac{\partial f}{\partial t}$?
It seems as if each of the rows is "saturating",
eventually, at large t values, reaching a constant
height. That is
$$\int_{t \to \infty} \frac{\partial f}{\partial t} = 0$$



Partial Derivatives and Data

	, e		e	
	x=0	x=10	x=20	x=30
y=0	89	80	74	71
y=2	93	85	80	76
v=4	98	91	85	81
v=6	104	98	92	88
y=8	112	105	99	94

The function f(x,y) is given by the following data.

What is f(10,6)? = **??**

If f(x,y) = 98 and y = 4 then what is x? $\chi = \overline{\partial}$ Estimate $\frac{\partial f}{\partial x}$ at (20,4). $\frac{\partial f}{\partial \chi} \simeq \frac{\Delta f}{\Delta \chi} = \frac{8/-7/}{80-10} = \frac{-10}{20}$ Estimate $\frac{\partial f}{\partial y}$ at (20,4). $\frac{\Delta f}{\Delta y} = \frac{72-80}{6-2} = \frac{12}{4} = \overline{3}$

Use these partial derivatives to estimate
$$f(22,4)$$
.

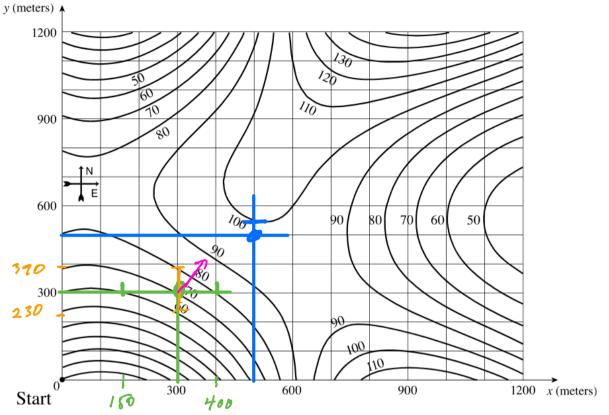
$$f(22,4) = f(20,4) + 2 \cdot (-\frac{1}{2}) = 85 - 1 = 84$$

$$\Delta x \quad f_x$$

Use these partial derivatives to estimate
$$f(20,5)$$
.
 $f(20,5) = f(20,4) + 1 \cdot 3 = 85 + 7 = 88$
 $\Delta y + 1 \cdot 3 = 85 + 7 = 88$
Estimate $f(22,5)$.
 $f(22,5) = f(20,4) + \Delta x + 4 + 4 + 5 + 5 = 87$

Math 213 -**Graphical Data**

The following is a map with curves of the same elevation of a region in Orangerock National Park.



We define the altitude function A(x,y) as the altitude at a point x meters east and y meters north of the origin ("Start"). $A_{y} \approx \frac{\Delta A}{\Delta y} = \frac{80 - 60}{390 - 230} = \frac{20}{160} = 0.13$

1. Estimate A (300,300) and A (500,500).

2. Estimate A_x (300,300) and A_y (300,300).

$$A_{\rm X} \simeq \frac{\Delta A}{\Delta {\rm X}} = \frac{80 - 60}{400 - 150} = \frac{20}{250} \simeq 0.08$$

3. What $do A_x$ and A_y represent in physical terms?

slope of a peth as slope of a path as we more East we more North

Math 213 - Graphical Data

4. In which direction does the altitude increase most rapidly at the point (300, 300)?

5. Use your estimates of A_x (300,300) and A_y (300,300) to approximate the altitude at (320, 310).

 $A (320,710) = A (300,300) + 20A_x + 10A_y$ = $70 + 20 \cdot .08 + 10 \cdot 0.13$ = 70 + 1.6 + 1.3-72.9

Math 213 - More Graphical Data

1. Refer to the following contour graph.

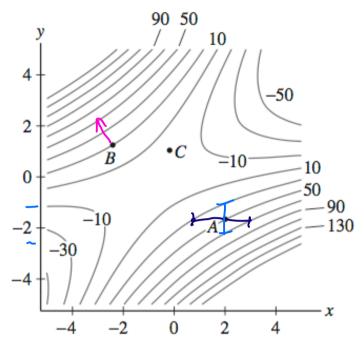
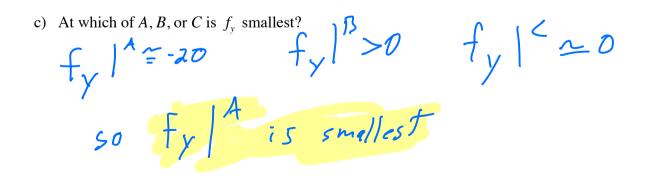
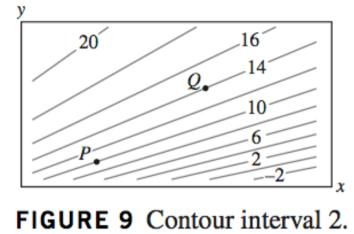


FIGURE 8 Contour map of f(x, y).

- a) Estimate f_x and f_y at the point A. $f_x \simeq \frac{70-30}{2.8-0.3} = \frac{40}{2.5} = \frac{160}{10} = \frac{16}{10}$ $f_y = \frac{30-70}{1-(-7)} = -\frac{40}{2} = -20$
- b) Starting at point *B*, in which direction does *f* increase most rapidly?



2. Refer to the following contour graph of f(x,y).



- a) Explain why f_x and f_y are both larger at P than at Q.

b) Explain why $f_x(x,y)$ is an increasing function of y. That is, for any x, $f_x(x,b_1) > f_x(x,b_2)$ whenever $b_1 > b_2$.

Math 213 - Mixed Partials

The level curves of a function z = f(x, y) are given below.

