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Elsewhere in this volume, Watson and Mason discuss example generation from
the students’ perspective by highlighting some of the ways that example generation can
be used to increase students’ understanding of mathematics and improve their attitudes
toward mathematics. This chapter complements this work by describing ways that
teachers and textbooks might use examples to help undergraduates better understand
mathematics. We distinguish between using worked examples to solve exercises and
problems and using examples to help promote students’ understanding of mathematical
concepts and proofs. We begin with worked examples provided by the teacher or
textbook. We then discuss the role of examples in building an understanding of a
mathematical concept. Next we discuss how examples can be useful in understanding
mathematical proofs. In each of these sections, we present specific suggestions that
teachers might use in their own mathematics classrooms and we cite research studies that
motivate and support these suggestions.

Worked examples

The term “example” has multiple uses in mathematics education (cf., Watson &
Mason, 2002). In some contexts, the word “example” refers to an illustration of a
technique used to complete a certain type of mathematical task. For instance, a written
solution to the question “Find all local minima and maxima of the function f{x J=x>+5x7-
8” might be regarded as an example of how to solve minimum/maximum problems in an
introductory calculus course. This is the way that the word example is often used in
undergraduate textbooks, in which individual sections of the book frequently introduce a
technique and then provide a series of examples in which the technique is applied. In this
paper, we refer to such examples as “worked examples”. In other cases, the use of the
word example is meant as a particular instance of a mathematical concept (e.g., 6 is an
example of an even number). Consideration of these types of examples can be used to
improve students’ understanding of a concept. Pedagogical uses of examples of concepts
will be discussed later in this chapter.

A series of studies by Lithner (2000, 2003, 2004) suggest that undergraduates in
procedure-oriented mathematics courses like calculus complete homework exercises
predominantly by first locating similar worked examples in the textbook and then using
them as a basis for formulating a solution to the exercise. (Note that this might also be the
case in proof-oriented courses. Recent studies suggest that some undergraduates in proof-
oriented courses may construct proofs via the use of worked examples (Fukawa-
Connelly, 2005; Weber, 2004, 20052, 2005b)). In one study, Lithner (2003) observed
undergraduates completing their homework problems in a calculus course. He found that
the students in his study almost always used worked examples to complete their



homework. This strategy was employed by both weak and strong students, and was used
in cases in which the undergraduates had the background knowledge to complete the
problems without the use of this strategy (Lithner, 2000, 2003). In another study, Lithner
(2004) analyzed the exercises in calculus textbooks to determine what proportion of
exercises could be solved by the use of worked examples. He found that, for 90% of the
exercises in these textbooks, there was an analogous worked example presented earlier in
the section. With minor modifications, these worked examples could be transformed into
solutions to the exercises. In these cases, the undergraduates could solve the problem
without reasoning about the concepts in the section. Only 10% of the problems could not
be solved in this way and required the students to reason about the properties of the
concepts that they were ostensibly studying. Lithner (2003, 2004) expressed concern
about these results, fearing that many students are completing their homework in ways
that are not conducive to building their conceptual understanding or problem-solving
strategies.

In spite of Lithner’s reservations, many cognitive psychologists have stressed the
benefits of having students use worked examples to solve problems (e.g., Zhu & Simon,
1987; Atkinson, Derry, Rankl, & Worthman, 2000). In particular, Atkinson et al. argue
that worked examples “provide an expert’s problem-solving model for the learner to
study and emulate” (p. 181-182). Students who try to solve problems without examples
typically develop, practice, and reinforce “novice strategies”—that is, strategies for
solving problems that both ignore the deep structure of the problems being solved and are
generally ineffective. In contrast, students who use appropriately chosen worked
examples as a guide for solving problems are more likely to focus on the deep structure
of the problem that they are solving and use more sophisticated strategies for solving it
(Atkinson et. al., 2000). Tarmizi and Sweller (1988) analyzed what types of worked
examples are most effective for helping students learn how to solve problems. They
found that worked examples which reduced students’ cognitive load—that is, solutions
that would not require a student to expend a great deal of mental effort to understand—
proved to be more beneficial to students than more complicated worked examples that
required greater mental effort to comprehend. For instance, worked examples in
geometry that relied on a single mode of representation (e.g., only analytical or only
diagrammatic) helped students more than worked examples that combined two
representations (e.g., a solution in which analytic reasoning interacted with a diagram),
since the latter required students to expend cognitive effort to understand the links
between the analytic and diagrammatic portions of the solution.

The preceding summaries serve as a basis for two pedagogical suggestions. First,
when worked examples are presented to students, it is important to include examples that
are simple and easy to follow. For instance, when presenting a solution to a min/max
problem in calculus, it is advisable to have some examples that do not use sophisticated
algebraic manipulations, the use of trigonometric identities, or other techniques that an
undergraduate might not easily follow. Such examples will cause students to focus more
on the details of the solution, rather than its deeper structure. Second, it might be
worthwhile to ask students to complete some exercises that cannot be solved solely via
the consideration of a worked example, but requires the student to think about relevant
properties and concepts (Lithner, 2003). Such experiences will provide students with the
opportunity to develop their understanding of the mathematics being studied and mitigate



chances that they will develop the unproductive belief that mathematics consists of
learning a series of procedures.

Using Examples To Build Concept Images

What does it mean to understand a mathematical concept? An undergraduate’s
understanding of a mathematical concept should include his or her ability to state and
reason from the definition of that concept. However, mathematics educators argue that
one’s understanding of a mathematical concept involves much more than this. Tall and
Vinner (1981) distinguished between a student’s knowledge of a concept’s definition and
that student’s concept image—i.e., her/his total cognitive structure, including all
examples, nonexamples, facts, properties, relationships, diagrams, images, and
visualizations, associated with that concept. Students’ images of concepts have a
significant influence on how they reason about a concept. Many students have images of
concepts that are at variance with the concept’s definition. For instance, Tall and Vinner
(1981) found that many students claimed that functions whose graphs have cusps are not
continuous, even if they could state the definition of continuity. Students with poor
images of concepts often experience difficulty applying the concept definitions and
writing proofs about those concepts (e.g., Moore, 1994; Weber & Alcock, 2004; see also
Oehrtman, Selden & Selden, and Harel & Brown, this volume). On a more positive note,
students with rich and accurate concept images are often able to reason productively
about these concepts and use their intuitive reasoning as a basis for constructing formal
proofs (Weber & Alcock, 2004).

These findings suggest that an important goal of mathematics education is to
provide students with the opportunity to build strong concept images. In this subsection,
we will address the question of how this goal might be achieved. We first present the
results of two research studies demonstrating that students can build their understanding
of a concept by considering and generating examples of that concept. We then discuss
actions that a teacher might take in his or her classroom to lead students to generate or
consider a variety of examples and describe research that supports these suggestions.

Several studies show that one way that students can develop a strong concept image
is by generating examples of that concept. Dahlberg and Housman (1997) and Housman
and Porter (2003) investigated the strategies undergraduate students use to learn a new
mathematical concept. In both of these studies, students were given the following formal
definition:

A function is called fine if it has a root (zero) at each integer.

At first students were given no guidance and were simply asked to come to an
understanding of the definition. Students used a variety of learning strategies at this
point, including generating examples, reformulating the definition in their own words,
memorizing, and recalling definitions of the base concepts function, root, at each, and
integer. Students were then asked to carry out a number of tasks that both measured and
helped to develop their understanding of the new concept: Students were asked to give
an example of a fine function, give an example of a function that was not fine (a
“nonexample”), provide an explanation in the student’s own words and/or pictures of
what a fine function is, verify whether six functions were or were not fine, and determine
whether four conjectures were true or false. In Dahlberg and Housman’s study, the



students who used example generation (producing one or more examples related to the
concept) and concept reformulation (expressing the concept using pictures, symbols, or
words different from the definition) were the ones best able to develop an accurate and
useful understanding of the concept. In addition, the students who used example
generation were the ones who were best able to identify the correctness of conjectures
and provide explanations. The students who primarily reformulated concepts without
generating examples were also able to determine whether a given object was an example
of the mathematical concept, but these students were more easily convinced of the
validity of a false conjecture. Although example generation and concept reformulation
were the most beneficial learning strategies for these students, example usage — the use of
researcher-provided examples — was also somewhat effective in helping students learn
about the concept. In Housman and Porter’s study, students who wrote and were
convinced by deductive arguments in a separate task-based interview were successful in
reformulating concepts, using examples, and generating examples when asked to do so or
when it was necessary to disprove a conjecture.

The results of these two studies suggest that the consideration of examples of
concepts can help students understand concepts better. In addition, many mathematicians
find it useful to consider carefully chosen examples to understand concepts and their
definitions (e.g., Alcock, 2004). As Paul Halmos remarked, “A good stock of examples,
as large as possible, is indispensable for a thorough understanding of any concept, and
when I want to learn something new, I make it my first job to build one.” (Halmos, 1983,
p. 63). Unfortunately, the data from these two studies also demonstrate that some students
do not spontaneously consider examples when presented with a new concept. In the rest
of this sub-section, we consider three ways that teachers might lead students to consider
examples: (1) by presenting examples, (2) by helping students generate examples and (3)
by asking students to reason about given examples.

The most straightforward suggestion is for teachers to simply prov1de examples and
counterexamples when they introduce a new concept. However, there are two reasons
why a teacher should exercise caution in choosing which examples to present. First,
students tend to overgeneralize, believing that irrelevant properties held by an example of
a concept are shared by all members of the concept. Second, as Watson and Mason point
out in this volume, many students will treat counterexamples as isolated cases, anomalies
that can be ignored. A few researchers have suggested guidelines for example
presentation that can potentially alleviate the negative effects of these student tendencies.
We will discuss these guidelines below and then illustrate how they can be applied in the
case of convergent sequences.

o First, teachers can present a wide range of examples that do not all share an
irrelevant characteristic (Sowder, 1980).

e Second, it is often useful to pair an example and a counterexample that differ in
only one characteristic, allowing students to focus their attention on relevant
aspects of the concept (Sowder, 1980).

e Third, teachers can not only describe why the examples are, or are not, members
of the relevant concept, but also describe ways that students can produce similar
examples or counterexamples (Peled & Zaslavsky, 1997).

» Finally, consistent with Watson and Mason’s chapter in this volume, after
presenting one type of example of a concept, teachers could then ask students to



construct similar examples or even describe how a class of such examples could
be constructed (see also Watson & Mason, 2002).

To illustrate these guidelines in a concrete setting, we discuss the concept of
convergent sequences. It is natural to exemplify this concept with a prototypical
convergent sequence, such as (1/n). The danger with only introducing this one example,
or very similar examples such as (1/n®), is that students may focus on features of this
sequence that do not guarantee convergence. For instance, students may infer that
convergent sequences are monotonic, never attain their limit, or that each term must be
closer to the limit than the last. In fact, an extensive body of research shows that many
undergraduates hold these beliefs (Cornu, 1991). For this reason, it is better to present
students with a range of examples, perhaps including an alternating sequence converging
to zero (illustrating a non-monotonic convergent sequence), a constant sequence
(showing that sequences can attain their limits), and non-prototypical convergent
sequences such as (1, 2,3,4,5,6,1,1, 1, 1, 1...). Likewise, students should be asked to
consider a wide range of counterexamples, including sequences that diverge to infinity
and negative infinity, other unbounded sequences, and sequences with multiple cluster
points. Each of these counterexamples could be compared to a specific convergent
sequence, similar in most respects, but differing in an important respect that causes one to
diverge and the other to converge. For instance, comparing the sequences
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subsequences can converge, but only if the two subsequences converge to the same
number. For examples such as () and (b,), teachers can describe the reasoning they used
to produce these examples and describe how other examples of that type could be
produced. For each presented example, students can be asked to generate another
sequence or a family of sequences that have the same features as the example under
consideration.

Teachers can also have students play a more active role in their mathematical
learning by having them generate examples of concepts themselves. When discussing
convergent sequences, the teacher could ask students to generate a particular sequence
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that is convergent. Responses might include (ij Some students may not have come up
WA

with any examples on their own, but after seeing their classmates’ examples, they might
contribute to the next task. The teacher could then ask students to give an example of a

sequence that is peculiar in some way. Responses might include some of the previously
reported examples together with the reasons why they are peculiar. For instance, the
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b, = 0 for all natural numbers 7 is constant. Asking students to give examples of
convergent sequences in alternative representations, such as a graph of a convergent
sequence or expressing a convergent sequence as a recurrence relation, can also be
encouraged. Discussion of such examples can lead the class towards a general



characterization of a convergent sequence (See also Rasmussen & Marrongelle, this
volume, for a further description of proactive teacher moves).

Students can also be asked to generate examples in order to explore boundaries and
extend the range of possibilities. For example, students who are studying convergent
sequences could be asked to find, in this order, each of the following:

1. aconvergent sequence,
a convergent sequence that is not monotonic,
a convergent sequence that does not get strictly closer to its limit with each term,
a convergent sequence that achieves its limit, and
a convergent sequence whose formula, treated as a real-valued function, would
not be continuous.
In doing this task, ask students to make sure that an example given for any one item
should not satisfy the next item. Thus, the first example would be a sequence that
converges, but is monotonic. The second example would be a non-monotonic convergent
sequence, but one that does become strictly closer to its limit with each term (such as
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students are induced to think more broadly to successfully complete the exercise.

Alcock (2004) suggests a third way teachers can use examples to enrich students’
concept images. Students can be given definitions for a collection of concepts. Then
students can be presented with worksheets with a number of objects and be asked to
determine what properties each object has. To illustrate, after students are introduced to
sequences, they can be given the definitions for convergent, bounded, and monotonic
sequences. They can then be given a collection of sequences and asked to determine if the
sequences are convergent, bounded, and/or monotonic. Conversations between students
and between student and teacher can enable students to understand what the definitions of
each of these concepts are asserting and to build their concept images of the properties.
Further, these activities can address potential misconceptions that students might have or
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does not have to be monotonic to converge) and to form mathematical conjectures in
response to their own questions (e.g., are all convergent sequences bounded? Do all
monotonic bounded sequences converge?). Such a treatment does not have all the
benefits of example generation that Watson and Mason discuss in this volume; for
instance, the affective benefits of example generation may not be realized here. However,
Alcock’s suggestion may be more efficient in terms of time, and it does ensure that
students will consider the classes of examples that teachers believe are important.

Using Examples In The Form Of Generic Proofs

There are many purposes of presenting proofs in university classrooms. However,
mathematics educators argue that two of the most important purposes of proof are
convincing—i.e., removing all doubt that a theorem is true—and explaining—i.e.,
providing students with insight as to why a theorem is true (e.g., Hanna, 1990; Hersh,
1993). Hersh (1993) argues that the formal proofs that we present to our students often
fail to achieve both of these goals. First, many students obtain conviction of general



assertions not by reading formal proofs, but by checking whether that assertion holds in
several individual cases.' Formal proofs seem superfluous to these students—they feel
they can find out whether an assertion is true or not just by checking a few examples
themselves. Further, due both to their weak understanding of formal proofs and the
highly formal way that proofs are traditionally presented, undergraduates often do not
find proofs to be explanatory (Hersh, 1993).

Rowland (2002) suggests an alternative to formal proofs in number theory. When
discussing a general theorem that applies to a class of objects, choose an arbitrary object
from among that class. Demonstrate that the theorem holds for that particular object, but
make sure that the demonstration relies in no way upon properties of the specific object
under consideration that are not shared by all objects in the class to which the theorem
applies. Mason and Pimm (1984) call such a demonstration a generic proof of the
theorem. Rowland advocates presenting generic proofs of theorems prior to, or in lieu of,
formal proofs of theorems. He argues that students gain more conviction and
understanding from generic proofs than from formal proofs, and students” comprehension
of formal proofs will improve if the presentation of a generic proof precedes the
presentation of a formal one.

Rowland provides a concrete instance of a generic proof by discussing his treatment
of Wilson’s theorem. Wilson’s theorem asserts:

-1)!=-1 (mod p) for all primes p.
P

When teaching students about Wilson’s theorem, Rowland justifies the theorem using the
following generic approach. He first looks at the statement for the particular prime 19,
although 13 and 17 would work equally well. He lists the integers between 1 and 18
(inclusively), the reduced set of integers modulo 19. He then draws lines connecting each
element in this list to its multiplicative inverse modulo 19, linking 2 with 10, 3 with 13,
and so on. Of course, every listed element will have an inverse that is another element in
the list, with the exception of 1 and 18, which are their own inverses. Now 18! can be
rewritten by lining up each integer with its multiplicative inverse modulo 19. After doing

this, Rowland shows how the product ﬁi =1-1%.18(mod19).
=1

There are several aspects of this presentation that made this a good generic proof.
The first was Rowland’s choice of 19. A prime such as 2, 3, or 5 would not have enough
reduced residue classes to see the general structure of Rowland’s arguments. A larger
prime like 37 would have so many residue classes that the argument would become more
difficult to follow; the students may lose the structure of the argument in the arduous
calculations of finding the multiplicative inverse of each integer modulo 37. Further, 19
appeared to be an “arbitrary prime”—i.e., it did not have any noticeable distinguishing
properties not shared by other primes. Another reason 2 would be a poor prime to inspect
was because it was the only even prime.2 Second, Rowland did not make use of any

"n the language of Harel and Sowder (1998), we might say these students hold an empirical proof scheme,

but not a deductive proof scheme.

The lack of special properties is easier to see if we move beyond looking at primes. For instance, in a
generic proof about the natural numbers, one should choose numbers that are neither prime nor perfect
squares.



special properties of the number 19 .The central reasoning in Rowland’s argument was
that every element except 1 and 18 (which is —1 modulo 19) is not its own multiplicative
inverse modulo 19. Rowland’s demonstration could easily be used to verify Wilson’s
theorem for any other prime. Third, all constructive aspects of the proof were identified
and verified. For instance, the claim that 2 had a multiplicative inverse modulo 19 was
not only justified by a theorem. The inverse of 2 was also explicitly found in the number
10, and the student could verify that 2 and 10 were in fact inverses. Finally, the reasoning
was presented in such a way that it could easily be abstracted into a more general formal
proof. Based on questionnaires and interview data from his own classrooms, Rowland
reports that students who see this type of presentation can describe why this general
assertion can be applied to any prime number and gain a strong conviction that the
theorem holds for all prime numbers.

Following Rowland, Hazzan and Zazkis (2003) describe another way that examples
could be used to construct proofs. Many proofs have constructive components—they
show how certain elements with desired properties can be created, but do not explicitly
state what these objects are. Hazzan and Zazkis advocate having students perform the
constructions themselves in particular instances before observing the proof that employs
these constructions In support of this recommendation, Hazzan and Zazkis argue, “The
human mind is not satisfied with the knowledge that some objects exist. There is a desire
to point out exactly what these objects are. Similarly, unraveling a construction process
with an example helps us understand exactly how the construction works” (italics are the
authors’).

Consider the proof that there are infinitely many primes. A standard proof of this
proposition is given below.

Theorem: There are infinitely many primes.

Proof (by contradiction): Suppose there are not infinitely many primes. Then we
can enumerate the primes py, p2, ... , po. Lt N=prpz....pn + 1. For all i such that 1<i<n,
pi divides pi-p2'...-p, but does not divide 1, so p; does not divide N. Hence, no prime
divides N. This contradicts the fact that every integer greater than 1 must be divisible by
at least one prime.

This proof has a constructive aspect in that it describes how a number N can be
constructed, but does not explicitly state what the number N is. The exact value of N, of
course, depends on what numbers are elements of the hypothetical finite set of primes
(Leron, 1985). Students often have trouble following this proof. However, if students
were asked to construct the N in the proof for particular sets of primes, their
understanding might improve. For instance, students could verify that:

2 and 3 donotdivide N=2-3 + 1
2,3, and 5 do not divide N=2-3-5 + 1.

2,3,5, and 7 do not divide N =2-3-5:7 + 1, and so on.
Students might also want to examine N = 2-3-5-7-11-13 + 1 = 30031. Here 30031 is
a composite number (30031 = 59-509). Inspecting this example can make students aware
that the product of the first n primes plus one does not always yield a prime number, only
a number whose prime factors are not included in the presumably finite set of primes.



After exploring these examples, the formal proof that there are infinitely many primes
will be more accessible to students. They will have a greater appreciation for how the
variable N in the proof is being defined and why none of the enumerated primes will
divide it.

Hazzan and Zazkis further illustrate how these techniques can be used to enhance
students learning of other proofs with constructive components. One proof they looked at
was a standard proof of the Basis Theorem in linear algebra. The Basis Theorem asserts
that, in a finite dimensional space, all bases have the same cardinality. Standard proofs of
the Basis Theorem often rely on the Replacement Lemma, which asserts: “Let B be a set
of linearly independent vectors in the spanning space of a set of vectors A. For all subsets
B,c B , there exists a subset 4, c A, such that |A;| = |B;| and (A-A;)UB; spans the same
space as A.”

The Replacement Lemma is clearly constructive, in the sense that it tells the reader
that a subset of spanning set exists, but it does not state what it is or even how it could be
found. As a result, many students find proofs of the Basis Theorem relying on this lemma
to be confusing. Hazzan and Zazkis (2003) designed a series of computer activities to
help students understand the Replacement Lemma. These activities allowed students to
enter a spanning set A and a set of linearly independent elements B and the computer
would then find the elements in the spanning set which could be replaced by the subset
B;. Students who completed these exercises found the subsequent proof of the Basis
Theorem to be understandable and meaningful.

Conclusion

In this chapter, we have discussed a number of ways that teachers can use worked
examples and employ examples to build undergraduates’ understanding of mathematical
concepts and proofs. Examples not only illustrate concepts, principles, and proofs, they
can help students to explore, expand, generalize, refine, and test their understanding.
Students who are exposed to, work with, and generate their own examples are actively
engaged in mathematics and learning.
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Responses to Review 1

Suggested Change

Action Taken

Add a short discussion of the possible pitfalls
of using examples if the guidelines suggested
here are ignored.

We believe that we had discussed possible
pitfalls of ignoring the suggested guidelines. In
our revision, we added sentences to make the
potential pitfalls more prominent and clear. For
instance, we added sentences such as the
following: For instance, when presenting a
solution to a min/max problem in calculus, it is
advisable to have some examples that do not
use sophisticated algebraic manipulations, the
use of trigonometric identities, or other
techniques that an undergraduate might not
easily follow. Such examples will cause
students to focus more on the details of the
solution, rather than its deeper structure.

If the authors have examples of student work,
providing these could enhance the usefulness,
clarity, and convincingness of the paper.

We did not have examples of students’ work
that we could use that would not considerably
lengthen the paper and distract from its focus.

Responses to Review 2

chapter complements their work by
describing...

Suggested Change Action Taken
p. 310: Omit the first sentence. i We did this. n
p. 310: Begin the third sentence this way: This | We did this.

p. 310: Final sentence of the first pe_u'agraph
(and elsewhere): mathematics classrooms; not
mathematical classrooms.

We made these changes thrc;uglout the paper.

procedural-oriented with procedure-oriented..

p. 310: Paragraph 2, line 1: Omit use of the We did this.

term

p. 310: Paragraph 2, line 10: Replace is meant | We did this.

as an example with is meant as a particular

instance. _ - |
p. 310: Paragraph 3, line 2: Replace We did this.

p. 310: Paragraph 3, lines 4-7: You have here
a confusing plethora of parentheses.

We moved the parenthetical reference citation

to the end of this sentence to improve the
sentence’s clarity.

p. 31 1: Line 8: Instead of session do you
mean section?

Yes. We changed this word.

_p.-3 11: Paragraph 2, lines 6-7: Consider
omitting or shallow strategies for solving
problems.

We omitted this wording.

L p. 314 3" 4" and 5% lines from bottom: Is

We adjusted the punclu;]tin_{] to clarify the




there one statement following the colon, or
two? If one, what do you mean? If two, re-
punctuate for clarity.

meaning.

p. 315: In the paragraph beginning “Alcock
(2004)”, line 12: It would be helpful to add as
follows: ...and to form mathematical
conjectures in response to their own questions

(e.g.,...).

We made this addition.

p. 316: Line 7: ...find proofs zo be...

We added the word ‘to’, as suggested.

p. 316: Paragraph 3, line 3: Remove italics
from —1.

We did this.

p. 316: Paragraph 4, line 8: Every listed
element has an inverse; 1 and 18 are not
exceptions. Revise your language to say what
you really meant, that each element of the list
except for 1 and 18 can thus be paired with
another element in the list.

We revised the language, as suggested.

p. 316: Paragraph 5, line 7: Consider adding
the word noticeable to get noticeable
distinguishing properties... It is pretty hard to
find a number that doesn’t have any
distinguishing properties. ..

We added this word.

p. 317: Line 3: ...could be easily be...

We omitted (the first occurrence of) the word
‘be’, as suggested.

p. 317: In your proof that there are infinitely
many primes, you draw an incorrect
conclusion. It does not follow that N must be
prime (as you actually note elsewhere).

We corrected this proof, as suggested.

p. 318: Line 10: ...linearly independent
vectors. ..

We added this word.

p.317: Line 11: ...there exists a subset of
ACA

We deleted the word ‘of’.

Responses to Review 4

Suggested Change

Action Taken

No changes suggested.

none




