(Game 086)

Int J Game Theory (2001) HE:HIE-111

International
Journal of

© Springer Verlag 2001

Linear and symmetric allocation methods for partially
defined cooperative games

David Housman

Department of Mathematics, Goshen College, 1700 South Main Street, Goshen, IN 46526, USA
(e-mail: dhousman@goshen.edu)

Received June 1996/Revised August 2001

Abstract. A partially defined cooperative game is a coalition function form
game in which some of the coalitional worths are not known. An application
would be cost allocation of a joint project among so many players that the de-
termination of all coalitional worths is prohibitive. This paper generalizes the
concept of the Shapley value for cooperative games to the class of partially de-
fined cooperative games. Several allocation method characterization theorems
are given utilizing linearity, symmetry, formulation independence, subsidy free-
dom, and monotonicity properties. Whether a value exists or is unique depends
crucially on the class of games under consideration.
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1. Introduction

There is a growing literature on the applications of cooperative game theory
to the allocation of costs or benefits of a joint endeavor [for example, see Curiel
et. al (1993), Driessen (1994), Skorin-Kapov (1993), and Young (1994) which
provides an extensive review of earlier literature]. This paper is motivated by
such applications when the determination of all coalitional worths is prohib-
itively expensive. For example, each coalitional worth may require an extensive
engineering or accounting study, and the number of such studies increases ex-
ponentially with the number of players. This latter problem is sometimes al-
leviated if the game has a precise underlying structure (e.g., airport landing
fees, minimum cost spanning tree games, assignment games, and network flow
games). When there is no precise underlying structure, accountants often use
ad hoc methods based upon only a small number of the coalitional worths.
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The purpose of this paper is to present axiomatic rationales for allocation
methods when not all coalitional worths are known.

Letscher (1990) introduced the idea of partially defined games. Some of
the results in this paper were first reported in Housman (1992). Willson (1993)
characterized the reduced Shapley value using the axioms of linearity, symme-
try, and margin monotonicity. Willson’s work is in the spirit of Young’s (1985)
characterization of the Shapley value for cooperative games. In keeping with
Shapley’s (1953) original characterization of the Shapley value for cooperative
games, we use the axioms of linearity, symmetry, and subsidy freedom (some-
times called the null player axiom). We take the viewpoint that a partially
defined game is an incomplete representation of an unknown “fully defined”
game. Often we have some a priori knowledge about relationships among the
coalitional worths (e.g., superadditivity), and our allocation method should
make use of this knowledge. So, special care is taken to examine special classes
of games in addition to the class of all games. Similar attention to special classes
of games in the context of classical value theory includes Monderer (1988)
showing that every semivalue on a subspace of games can be extended to a
semivalue on all games and Gilboa and Monderer (1991) showing a variety of
characterizations of quasi-values on subsets of games.

In section 2, we define partially defined games, extensions, and the reduced
Shapley value. By way of an example, we show why the reduced Shapley value
may not be an appropriate allocation method. In section 3, we characterize all
linear and symmetric allocation methods as weighted Shapley values. In section
4, we characterize all linear and symmetric allocation methods having one of
three different monotonicity properties. In particular, we generalize Willson’s
(1993) characterization of the reduced Shapley value as the unique linear, sym-
metric, and margin monotone allocation method. In section 5, we characterize
all linear, symmetric, and formulation independent (a property equivalent to
the better known covariant with respect to strategic equivalence) allocation
methods. We also show the general incompatibility of margin monotonicity
and formulation independence, and we argue the intuitive primacy of formula-
tion independence. In section 6, we characterize all linear, symmetric, and sub-
sidy free (often called the null player axiom) allocation methods on the classes
of zero monotonic, size monotonic, superadditive, and convex games. We close
the paper with a few concluding remarks.

2. Partially defined games and allocation methods

Throughout this paper, we let N = {1,2,...,n} be the fixed set of players. A
nonempty subset S of N is called a coalition, and we write |S| for the number
of players in the coalition S. A cooperative game is a real-valued function w
defined on the coalitions. The real number w(S) is called the worth of coalition
S and is interpreted as the total benefit available to the members of the co-
alition S if they cooperate with each other in the most efficient possible man-
ner. In the context of a joint cost allocation problem, w(sS) is the cost savings
obtained through cooperation as opposed to each member working alone. A
partially defined cooperative game is a cooperative game in which only some
of the coalitional worths are known. In this paper, whether a coalitional worth
is known will depend only on the number of members in the coalition. For-
mally, we call M a set of known coalition sizes if M is a subset of N contain-
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ing n. A (symmetric) partially defined cooperative game with respect to the set
of known coalition sizes M, abbreviated as an M-game, is a real-valued func-
tion w defined on coalitions whose sizes are in M, that is, w(S) is defined if
and only if |S| € M. Note that we assume that the worths of the grand coali-
tion N is always known (n € M). Note also that an N-game is a “fully defined”
cooperative game.

Example2.1. Letn =6 and M = {1,2,5,6}. To conserve space, we will remove
parentheses and commas in the notation for coalitional worths. For example,
w({1,4,5}) will be shortened to w(145). Define w by w(N) = w(12345) =
w(12346) = w(12356) = w(12456) = w(13456) = 120, w(23456) = 60, w(12) =
w(13) = w(14) = w(15) = 90, w(16) = 60, w(23) = w(24) = w(25) = w(34) =
w(35) = w(45) =30, and w(26) = w(36) = w(46) = w(56) = w(l) = w(2) =
w(3) =w(4) = w(5) =w(6) =0. Note that the worths of coalitions having
three or four members are not known.

Since our viewpoint is that partially defined games arise when we have in-
sufficient resources to determine all coalitional worths, it is important to know
what “fully defined” games could underlie a given partially defined game. Let
Q be a collection of N-games. An Q-extension of the M-game w is an N-game
w e Q satisfying w(S) = w(S) for all |S| € M. Define Q,, to be the set of M-
games w that have an Q-extension W, and whatever word is used to describe
an N-game in Q (e.g., convex) will also be used to describe an M-game in
Q. Collections of games often cited in the literature include convex, super-
additive, and zero-montonic games. The N-game w is convex if w(S)+w(T) <
w(SuT)+w(SnT) for all coalitions S and 7. The N-game w is superad-
ditive if w(S)+w(T) <w(Su T) for all disjoint coalitions S and 7. The N-
game w is zero-monotonic if w(S) + w({i}) < w(S v {i}) for all coalitions S
and players i ¢ S.

Example 2.2. Let w be the M-game described in Example 2.1. The M-game w
has no convex extension. Indeed, if w were a convex extension of w, then 180 =
w(12) +w(13) —w(l) < w(123) = w(123) +w(4) + w(5) + w(6) < w(N) = 120,
which is impossible. The M-game w has a unique superadditive extension de-
fined by

30, if |[S|]=3and1¢S

90, if|Sj=3and1eS

30, if |S|]=4,6€S,and1¢S

w(S) =< 60, if |S|]=4,6¢S,and1¢S.

90, if |S|]=4,6€S,and1eS

120, if |S|=4,6¢S,and1eS

w(S), if |S|eM

The proof is a straight-forward, but tedious, application of the superadditivity
inequalities. For example, if S = {1,2, 3,6}, then 90 = w(12) + w(36) < Ww(S)
and w(S) < w(N) — w(45) =90. The N-game w has many zero-monotonic
extensions: W is a zero-monotonic extension of w if and only if the following
conditions hold:
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30 <w(S) <60, if|S|¢Mand1¢S
90 <w(S) <120, if |S|¢ Mand1leS
Ww(R) <w(S), if|R|=3,|S|=4,andRc S
w(S) =w(S), if|S]e M.

The proof is a straight-forward application of the zero-monotonicity inequal-
ities. In summary, w is zero-monotonic and superadditive but not convex.

Suppose M is a set of known sizes and 2 is a collection of N-games. An
allocation method on M and Q is a function ¢ that to every M-game w € Q)
assigns an allocation x = (x1,x2,...,x,) € R" satisfying >, _y x; = w(N). We
will usually write ¢;(w) for x;. We interpret ¢,(w) as the fair share to player 7 if
all the players cooperate to obtain the total benefit w(N). Thus an allocation
method provides a method for dividing the total benefit of cooperation among
the players.

Willson (1993) defines the reduced Shapley value  on M-games by

=21 (27) S (")) Swe| e

meM |S|=m |S|=m
ieS i¢S

!

where <Z> = W is the standard binomial coefficient. If M = N, then
this formula can be interpreted as the average, over coalition sizes, of the dif-
ferences between the average worth of coalitions containing the player and the
average worth of coalitions not containing the player. If the differences for
coalition sizes not in M are taken to be zero, then this interpretation carries
over to general M. If M = N, the reduced Shapley value is the Shapley (1953)
value defined on N-games. In general, the reduced Shapley value agrees with
the Shapley value if all unknown coalitional worths are set equal to some con-
stant (a different constant may be chosen for each coalition size).

The formula given by Shapley (1953) for the Shapley value defined on N-
games involves a weighted average of marginal contributions, 4(S — {i}, S;w)
=w(S) —w(S—{i}). In order to generalize this approach to M-games, we con-
sider marginal contributions, 4(R, S;w) = w(S) — w(R), for coalitions satisfy-
ing R = S — {i} and |R| is the largest number in M that is strictly less than |S].
An equivalent formula for the reduced Shapley value is given by

T ) Il ) NS TR

meM |S|=m |R|=p(m)
ieS ReS—{i}

where p(m) = max{0,r: re M and r < m} is the next smaller size for which
coalitional worths are known, and we let w(¢) = 0 for notational conve-
nience. That formulas 2.1 and 2.2 are equivalent follows from comparing co-
efficients for each w(S) in the two formulas. Indeed, suppose S is a coalition
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satisfying i € S and |S| = s € M. Then the coefficient of w(S) in formula 2.2 is

1 /n—1\"/s=1\"/s—1 1 /n—1\" . .
Z = = which is the coefficient of
n\s—1 p(s) p(s) n\s—1

w(S) in formula 2.1. Suppose R is any other coalition. Then R is a coalition
satisfying i ¢ R and |R| =r = p(s) e M for some s e M. It follows that the

N/ s=1\n—r—1
coefficient of w(R) in formula 2.2 is _Ln ’ et =
1 - n\s—1 r s—r—1

1
—= (n > [after some algebra] which is the coefficient of w(R) in formula
n r
2.1.

Given the preceeding discussion, the reduced Shapley value for partially
defined cooperative games seems to be a natural generalization of the Shapley
value for cooperative games. The example challenges this intuition.

Example 2.3. Let w be the M-game described in Example 2.1. The reduced
Shapley value of our example M-game w is y;(w) = (41,17,17,17,17,11).
Note that the Shapley value of the unique superadditive extension w is y;(W) =
(62,14,14,14,14,2). So, the reduced Shapley value may not equal the Shapley
value of its unique extension. In fact, the Shapley value of no zero-monotonic
extension yields the reduced Shapley value for our example! Indeed, suppose w
is a zero-monotonic extension of w. Notice that y;(w) is an increasing function
of w(S) if i € S, is a decreasing function of Ww(S) if i ¢ S, and is an increasing
function of w(S) — w(S — {i}) if i € S. So, y, (W) will be minimized by setting
w(S)=90if |S|=3and 1S, w(S)=60if [S|=4 and 1¢ S, and W(S) =
w(S—{1}) if |S|=4 and 1 € S. Hence, y; (W) —; (w) = 5. In summary, the re-
duced Shapley value for our example partially defined game can be equal to the
Shapley value of a corresponding “fully defined” game only if the correspond-
ing game is not zero-monotonic.

The example shows us that the reduced Shapley value is sometimes an in-
appropriate choice for an allocation method for partially defined games if we
believe that our partially defined game corresponds to some “fully defined”
game for which we only know some of the coalitional worths.

3. Linear and symmetric allocation methods

In this section, we characterize all linear and symmetric allocation methods
on classes of partially defined cooperative games that are convex cones and
symmetric. We begin by defining our conditions and interpreting them in the
context of allocation problems.

For the remainder of this paper, M is a set of known coalition sizes, 2 is a
collection of N-games, and ¢ is an allocation method on M and Q. We will
interpret Q as the possible allocation problems that could arise a priori, and
so ), will be interpreted as the possible partially defined allocation problems
that could arise a priori. We will interpret ¢;(w) as the fair share given to player
i in the partially defined allocation problem w. We now define and interpret
two conditions on collections of N-games and allocation methods.

Suppose that v and w are M-games and a and b are real numbers. Define
the M-game av + bw by the formula (av + bw)(S) = av(S) 4+ bw(S) for all co-
alitions S satisfying |S| € M. The set Q is a convex cone if av + bw € Q when-
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ever v, w € Q and a, b are positive real numbers. Note that if Q is a convex cone,
then £, is a convex cone. The convex cone condition can be interpreted as
saying that changing the currency and combining possible allocation problems
should result in other possible allocation problems. If w is an allocation prob-
lem and b is a positive real number, then dw is really the same allocation prob-
lem expressed with a different currency (e.g., francs instead of dollars). If v and
w are allocation problems (e.g., municipal waste collection and sewage treat-
ment), then it should make sense to combine the two allocation problems into
the single allocation problem v + w.

Suppose that w is an M-game and ¢ is a permutation of N. If S is a coali-
tion, then let o(S) be the set {a(i) : i € S}. Define the M-game ow by the for-
mula (ow)(S) = w(a~1(S)) for all coalitions S satisfying |S| € M. The set Q is
symmetric if ow € Q2 whenever w € 2 and o is a permutation of N. Note that
if Q is symmetric, then ©,, is symmetric. The symmetry condition can be in-
terpreted as saying that relabeling the players in a possible allocation problem
should result in another possible allocation problem.

Collections of cooperative games that are convex cones and symmetric in-
clude the collections of all games, zero-monotonic games, superadditive games,
and convex games.

An allocation method ¢ is linear if p(av + bw) = ap(v) + bp(w) whenever
v,w € Q) and a, b are positive real numbers. Our interpretation is that the fair
share to a player should not depend on the unit of currency used to state the al-
location problem nor whether the allocation problem is first divided into sepa-
rate and additive allocation problems. Note that if €,, is a convex cone, then
av + bw € )y making the definition meaningful. Linearity is slightly stronger
than Shapley’s additivity axiom in which ¢ = b = 1. The additional, relatively
innocuous, proportionality assumption, ¢(bw) = bp(w) whenever w € 2, and
b is a positive real number, made here is necessary to rule out highly discon-
tinuous allocation methods. The reader could also substitute additivity for lin-
earity in all that follows if we restrict ourselves to rational rather than real
numbers.

An allocation method ¢ is symmetric if ¢, (ow) = ¢;(w) whenever w € Qy
and ¢ is a permutation of N. The fair share to a player should not depend
on the label given to represent that player. Note that if 2, is symmetric, then
ow € ), making the definition meaningful. This is the standard definition of
symmetry used in the literature, although sometimes it is called anonymity.
Two players i and j are called substitutes in the M-game w if w(S — {i}) =
w(S — {/j}) whenever S is a coalition satisfying i, j € S and |S| — | € M. Sym-
metry implies the weaker property equal treatment: ¢;(w) = ¢;(w) whenever i
and j are substitutes in w. In example 2.1, players 2, 3, 4, and 5 are substitutes
and so any symmetric allocation method should assign the same payoffs as did
the reduced Shapley value.

The reduced Shapley value is linear and symmetric on all collections of
games that are convex cones and symmetric. However, there are other such
allocation methods. Suppose b € RM satisfies b, = 1. The b-weighted Shapley
value " is defined by

o=t (27) S (7)) Swe | e

meM |S|=m |S|=m
ieS i¢S
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Note that the weighting is with respect to the size of the coalitions instead of
with respect to the player indices and is therefore distinct from the literature
on linear but nonsymmetric allocation methods for cooperative games (see
Kalai and Samet (1988) and Nowak and Radzik (1995)). The reduced Shapley
value is the special case when b,, = 1 for all m € M. The first theorem is that
b-weighted Shapley values are linear and symmetric and are the only linear and
symmetric allocation methods. This Theorem generalizes Theorems 3.6 and 3.7
of Willson (1993) because there Q is taken to be the collection of all N-games.

Theorem 3.1. Suppose Q,; is a convex cone and a symmetric collection of
games. The allocation method ¢ on Q, is linear and symmetric if and only if ¢
is a b-weighted Shapley value.

Proof: The function W’ is clearly linear and is symmetric because
D isiemoies OWS) = X isimmico1(s) WOET(S)) = X simmic s W(S) and sim-
tlarly g o) ¢ s OW(S) = D2 5121 ¢ s W(S)- That " is an allocation meth-
od, that is, yields allocations, follows from the following calculation:

D U (w) = w(N)

ieN

SE. T G0) S () e

ieN meM—{n} |S|=m |S|=m
ies i¢s
n—1\" n—1\"
S e () S
|S|=m ieS |S|=mi¢sS

:}Z me%;{n} b, (:1—_11 >1m . (n’; 1>l(n _ m)) mz:: w(S)

_1 > bw(0) > w(S)=0.

n me M—{n} |S|=m

Conversely, suppose ¢ is linear and symmetric. We need to show that there
exist constants b,,, m € M, satisfying b, = 1, for which p(w) = y(w) for all
we Q.

As a special case, suppose first that 2 is the collection of all games. For
each coalition T satisfying |T'| € M, define the M-game e’ by e?(T) = 1 and
eT(S) = 0 otherwise. Clearly, i and j are substitutes in e’ if both i, j € T or
both i, j ¢ T. By the equal treatment property of ¢, there are constants ay and
al for which ¢,(e”) = ar if ie T and ¢,(e”) = @ if i ¢ T. Since gp(e”) is an

. S 1
allocation, e”(N) =",y ¢;(eT) = |T|ar + (n — |T|)a} which implies ay = -

and af = —|T|ar/(n—|T|) if T # N. Suppose T and T’ are coalitions sat-
isfying |T| = |T'| € M, and let ¢ be a permutation of N satisfying o(7) = T".
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By the symmetry of ¢, if i € T, then az: = ¢, (e”") = g, (ge”) = pi(e”) = ar.
. o 1 .
Hence, there exist constants ¢,,, m € M, satisfying ¢, = — and ¢;(e”) = ¢7 if
n

ieT and g;(e") = —|T|ejr)/(n—|T|) if i ¢ T. Now given any w € Qy, we
may write w =37y w(T)e™. By the linearity of ¢, it follows that

p;i(w) = Z w(T)p;(e")

|T|eM

=3 | X g™ + Y w(Tgi(e)

meM \ |T|=m |T|=m
i¢ T

meM |T|=m |T|=m
ieT i¢T
n— .
Set b, = n( ) ¢my M € M, to obtain g(w) = l//b(W). In summary, the the-
m J—

orem holds when Q is the collection of all N-games.

Now consider the general case in which Q is a convex cone and symmetric,
but 2 need not contain all games. Again suppose ¢ is linear and symmetric on
Q). Our approach will be to extend the definition of ¢ to all M-games pre-
serving linearity and symmetry. We will then make use of our special case re-
sult.

Define Span(Q,,) to be the set of M-games spanned by Q,,, that is,
Span(2,y) is the collection of M-games ) _,_; a;w’ where a; is a real number
and w' € Q) for all i in some finite set /. Since 2,/ is symmetric, Span(2,y) is
symmetric. Indeed, suppose w € Span(,,) and o is a permutation of N. Then
w =, aw' for some finite set / and some real number a; and w’ € Q) for
all i € I. By symmetry of 2y, it follows that ow’ € Qyy and ow =>_._; a;(ow') €
Span(Qy).

We will now extend the definition of ¢ to Span(Q,). For each we
Span(£,r), there exist a finite set 7 and real number a; and w' € Q) forie I
satisfying w = >, _; a;w’; define @(w) = Y. ; aip(w'). We must check that @
is well-defined. Suppose w does not have a unique representation as a linear
combination of M-games in 2y, that is, suppose / and J are finite sets, a; is
a real number and w' € Q) for all i eI, b; is a real number and w/ € Qy
forall jeJ,and w =37, ;aw’ =3, ,bw/. Rearranging the last equality,
we obtain >3, ;. aw'+ 35 (=bp)w/ =37, (—a)w'+ 33, e biw/ where
I"={iel:a;>20}, I ={iel:a; <0}, J*T={jeJ:aq;>0}, and J~ =

iel
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{jeJ:a; <0}. Both sides of this last equality are positive (zero coeffi-
cients may be ignored) linear combinations of games in ©,,, and so the line-
arity of ¢ implies > ;. aip(w') + 3 ;- (=b))o(w’) = 32,1 (—ar)p(w') +
> jes+ bip(w/). Rearranging this equality, we obtain >, aip(w') =3, ;-
bip(w/). Hence, the value of ¢(w) does not depend on the representation chosen
for w, that is, ¢ is well-defined. It is now straight-forward to show that @(w) =
p(w) for all w e Qy, that ¢ is an allocation method implies ¢ is an allocation
method, and that the linearity and symmetry of ¢ implies that ¢ is linear and
symmetric.

In order to extend the definition of ¢ to all M-games, we need to con-
sider the subspace orthogonal to Span(Q,s). Define Orth(2,,) to be the col-
lection of M-games v satisfying g . » v(S)w(S) = 0 for all w e Span(Qu).
Since Orth(£2y,) is a linear subspace, Orth(Q,,) is a convex set. The collection
Orth(Qy) is also symmetric. Indeed, suppose v € Orth(Q,s) and ¢ is a permu-
tation of N. If w € Span(Qyy), then w' = ¢~'w € Span(Q),) and

Y (@)(S)w(S) = Y (a0)(S)(aw')(S)

iSlem 1Sle M
= > oo (S)w(e(S))
|S|le M
= Z v(R)W'(R) = 0.
|RjeM

Let n; and 7, be the projection maps from the vector space of all M-
games to Span(Q,,) and Orth(Q,,), respectively. That is, for any M-game w
the projection maps yield the unique M-games 7;(w) € Span(Qy) and my(w) €
Orth(Qyy) satisfying w = m;(w) + ma(w). We can now define our extension of

1
¢ to all M-games. Define ¢ by the formula ¢,(w) = @;(m1(w)) + i—z(ng(w))(N).
We now show that ¢ has the desired properties. First, ¢ is an extension of
¢. Indeed, if w e Span(Q),), then n;(w) = w and my(w) is the M-game with
all coalitional worths zero, and so ¢;(w) = @;(w) + 0 = ¢;(w) since ¢ is an
extension of ¢. Second, ¢ is an allocation method because ), , ¢;(w) =
2ien Pi(m(w)) + (m(W))(N) = (i (w))(N) + (m2(w))(N) = (m1(w) + 72(w)) -
(N) = w(N). Third, ¢ is linear because projection maps and compositions of

linear maps are linear. Fourth, ¢ is symmetric. Indeed, suppose w is an M-
game and o is a permutation of N. Then

b (W) = By (ma(oW) + - (7a(0w))(N)

= Dup{o(m (9))) + - (o (ma () (V)

() + 1 (ra()) (N)

= ¢;(w).
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In summary, ¢ is a linear and symmetric allocation method on the col-
lection of all M-games which equals ¢ on Q;,. By our earlier work, there exist
constants b,,, m € M, satisfying b, = 1 such that ¢ = *, andso p = y*. W

When M = N and Q is the set of all games, Theorem 3.1 characterizes
allocation methods satisfying all properties of a value except possibly the null
player axiom. This characterization shows that each such allocation method is
determined linearly by n — 1 constants, one for each coalition sizem=1,2, ...,
n — 1. This is technically similar to the Dubey et al (1981) characterization
of semivalues (methods satisfying all properties of a value except possibly ef-
ficiency which we take as part of our definition of allocation method) that are
uniquely defined by a vector of n weights, one for each coalition size m =
1,2,...,n.

We close this section with a uniqueness of representation theorem for
weighted Shapley values.

Theorem 3.2. Suppose Q) has a nonempty interior. The a-weighted and b-
weighted Shapley values are equal on Qg if and only if a = b.

Proof: Clearly, if a = b, then the a-weighted and b-weighted Shapley values
are equal. Conversely, suppose the a-weighted and bh-weighted Shapley values
are equal. For m e M, define the set functions v™ by v"(S)=1 if S=
{1,2,...,m} and v™(S) = 0 otherwise. Let w be an M-game contained in the
nonempty interior of ,,. Hence, for sufficiently small ¢ > 0, the M-games
w + v are contained in @y for all me M. Since y* =y, it follows that

0 = (- e™) — P00+ e0™) = Ew) — PP )+ oW (") = W 2(e™)) [sinee
W and g are linear] = e(y{ (v”) — ¥}(u")) [since ¥* = " on Qu] = -

-1
( " ) ) (am — by) [by formula 3.1]. Therefore, a,, = b,, forallme M. R
m—

4. Monotonicity

In this section, we consider three natural monotonicity conditions for an allo-
cation method on partially defined cooperative games, and characterize linear
and symmetric allocation methods satisfying each of these monotonicity con-
ditions.

Suppose M is a set of known sizes. Recall that we defined p(m) =
max{0,r:re M and r < m} to be the next smaller size for which coalitional
worths are known, and we let w(¢) = 0 for notational convenience. Given a
player i, two coalitions R and S are i-adjacent if |S| e M, i € S, |R| = p(|S]),
and R = S —{i}. Given an M-game w, a marginal contribution of i is the
quantity 4;(R, S;w) = w(S) — w(R) for some i-adjacent coalitions R and S.
Player i is marginally favored by M-game w over the M-game v if 4;(R, S;w) >
4;(R, S;v) for all i-adjacent coalitions R and S. So, a player i is marginally
favored by w over v if player i’s marginal contributions in w are at least as
great as in v. In such a circumstance, it is natural to assume that player i re-
ceives a higher payoff in w than v. The next condition formalizes this intuition.
The allocation method ¢ is margin monotone on Qyy if p;(w) > ¢,(v) whenever
a player i is marginally favored by an M-game w € 2, over an M-game v € Q.

The next theorem characterizes linear, symmetric, and margin monotone
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allocation methods. It is a generalization of Willson’s (1993) main theorem in
that he only considers £2,, equal to the collections of all M-games. The proof
given here is also much shorter and more transparent.

Theorem 4.1. Suppose Q) is a convex cone, symmetric, and has a nonempty
interior. The allocation method ¢ is linear, symmetric, and margin monotone on
Qyr if and only if ¢ is the reduced Shapley value.

Proof: Suppose the allocation method ¢ is linear, symmetric, and margin
monotone on Q). Let k be the smallest number in M. For me M — {k},
define the set functions v™ by v"(S) =1 1if |S|=m and 1 € S, v"(S) =1 if
|S| = p(m) and 1 ¢ S, and v™(S) = 0 otherwise. Let w be an M-game con-
tained in the nonempty interior of €2,,. Hence, for sufficiently small ¢ > 0,
the M-games w4+ ev™ are contained in @, for all me M — {k}. Because
v™(T) — v™(S) = 0 for all 1-adjacent coalitions S and 7, it follows that player
1 is marginally favored by w over w + ¢v™ and by w + ev™ over w. Because ¢
is margin monotone, it follows that ¢,(w) = ¢, (w + ™). Because ¢ is linear
and symmetric, theorem 3.1 implies ¢ is a b-weighted Shapley value. Hence,

. . 1
0= M(w +e™) — t/lf(w) = swf(v’”) [by linearity of 1//1’] = 5£(bm — b,)(m))
[using formula 3.1]. So, b, = b, for all me M — {k}. Since b, = 1, it fol-
lows that b,, = 1 for all m € M. Therefore, ¢ is the reduced Shapley value.
Conversely, suppose ¢ is the reduced Shapley value. By theorem 3.1, ¢ is
linear and symmetric. By formula 2.2, the reduced Shapley value for player i

is a positive linear combination of player i’s marginal contributions. Hence, ¢
is margin monotone. M

In addition to ), being a convex cone and symmetric, the theorem as-
sumes that ), has a nonempty interior. This condition clearly holds for the
collections of convex, superadditive, zero-monotonic, and all N-games. Weaker
conditions are possible. For example, the conclusion of the theorem holds, with
an almost identical proof, if ), is assumed to contain only zero-normalized
games and have a nonempty interior in the space of all zero-normalized N-
games. (See the Formulation Independence section for definitions of these
terms.) The next theorem shows that some condition on ), is required for
an allocation method to be uniquely characterized by linearity, symmetry, and
margin monotonicity.

Theorem 4.2. There exists a convex cone and symmetric Qy and linear, sym-
metric, and margin monotone allocation methods on Qy; which are not the re-
duced Shapley value.

Proof: Let k € M satisty p(k) =0, that is, k = min{m : m € M}. Let Q be the
set of all N-games w satisfying Z‘ S|k w(S) = 0. Clearly, 2,/ is a convex cone
and symmetric. Note that Q,, does not have a nonempty interior. Let ¢ = xp

where b,, =1 for all me M — {k} and by > 1. By theorem 3.1, ¢ is linear
and symmetric. We now show that ¢ is margin monotone. Let 1 € M satisty
p(l) = k. Suppose player i is marginally favored by w € Q) over v € 2,,. Then

p,(w) = g;(v) —W’(w) Yl (v) =y (w = v) [by linearity of Y] =y (w — v) +
1 n n—1
;(bk—w((k ) Do (") B k<v—v><s>> by

ieS i¢S
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-1
formulas 2.1 and 3.1] = lﬁi(W*U)+%(bk* 1) (Z i) Y isi=k (w—0)(S) +
- ieS

-l
(” k1> St 00 = 0)(8) ) [since v, & Qag implies 35, (v = 0)(S) = 0] =

ieS
[since player i is marginally favored by w over v, and i is margin monotone].
Hence, ¢,(w) = ¢;(v). N

Yi(w—v)+ % (b —1) ((Z: D_] - <" ; 1)_1> S isi=k (w —v)(S) [algebra] >0

Player i is coalitionally favored by M-game w over the M-game v if w(S) >
v(S) for all coalitions S containing i and w(S) < v(S) for all coalitions S not
containing i. So, a player i is coalitionally favored by w over v if coalitions
containing i are better off in w and coalitions not containing i are worse off
in w. In such a circumstance, it is natural to assume that player i receives a
higher payoff in w than v. The allocation method ¢ is coalition monotone on
Qyr if ¢;(w) > ¢;(v) whenever a player i is coalitionally favored by an M-game
w € Q) over an M-game v € Q. Note that if player i is coalitionally favored
by w over v, then player i is marginally favored by w over v. So, coalition mo-
notonicity is a weaker condition than margin monotonicity.

Theorem 4.3. Suppose 2, is a convex cone, symmetric, and has a nonempty in-
terior. The allocation method ¢ is linear, symmetric, and coalition monotone on
Qyy if and only if ¢ is a b-weighted Shapley value for which b, > 0 for allm e M.

Proof: Suppose the allocation method ¢ is linear, symmetric, and coalition
monotone on Q). For m e M, define the set functions v™ by v"(S) =1 if
S ={1,2,...,m} and v"'(S) = 0 otherwise. Let w be an M-game contained in
the nonempty interior of 2),. Hence, for sufficiently small ¢ > 0, the M-games
w + ev” are contained in Q,, for all m e M. Clearly, player 1 is coalitionally
favored by w + ev™ over w. Because ¢ is coalition monotone, it follows that
o, (w+ ev™) = ¢, (w). Because ¢ is linear and symmetric, theorem 3.1 implies

¢ is a b-weighted Shapley value. Helnce, 0< l//f(w + &™) — x//{’(w) = 8(//{’(1)’”)

[by linearity of "] = & ( n-1 ) by [using formula 3.1]. So, by, = 0 for all
me M. n\m—1

Conversely, suppose ¢ is a b-weighted Shapley value for which b,, > 0 for
all m e M. By theorem 3.1, ¢ is linear and symmetric. Suppose player i and
M-games w,v € Q) satisty w(S) > v(S) for all coalitions S containing i and
w(S) < v(S) for all coalitions S not containing i. Since in formula 3.1, the co-
efficients of w(S) are nonnegative when .S contains / and nonpositive when S
does not contain i, it follows that ¢,(w) > ¢;(v). Hence, ¢ is coalition mono-
tone. W

Player i is favored over player j in the M-game wif w(S L {i}) > w(S U {j})
for all coalitions S satisfying i, j ¢ S and |S| + 1 € M. So, player i is favored
over player j if substituting i/ for j can only increase the worth of any coali-
tion. In such a circumstance, it is natural to assume that player i receives a
higher payoff than player j. The allocation method ¢ is player monotone on
Qyr if ¢;(w) = ¢;(w) whenever a player i is favored over a player j in an M-
game w € ). Player monotonicity involves comparisons between players in
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a single game while margin and coalition monotonicity involve comparisons
between games for a single player. It is somewhat remarkable that player and
coalition monotonicity characterize the same class of allocation methods.

Theorem 4.4. Suppose Q,; is a convex cone, symmetric, and has a nonempty
interior. The allocation method ¢ is linear, symmetric, and player monotone on
Q) if and only if g is a b-weighted Shapley value for which b,, > 0 for allme M.

Proof: Suppose the allocation method ¢ is linear, symmetric, and player mono-
tone on Q. Let w’ be an M-game contained in the nonempty interior of £,,.
Since Q) is symmetric, ow’ is contained in the interior of £, for all permuta-
tions o of N. Since Q) is a convex cone, w = Y __ow’, where the summation is
over all permutations o of N, is contained in the interior of 2),. Note also that

1
all pairs of players are substitutes in w; hence, ¢;(w) = ZW(N ) forallie N.

For m € M, define the set functions v by v"(S) = 1 if S ={1,2,...,m} and
v™(S) = 0 otherwise. Since w is contained in the interior of 2, there exists a
sufficiently small ¢ > 0 for which the M-games w + ev” are contained in £,
for all m e M. Clearly, player 1 is favored over player n in w + ev”. Because
¢ is player monotone, it follows that ¢, (w + &™) > ¢,(w + ev™). Because ¢
is linear and symmetric, theorem 3.1 implies ¢ is a b-weighted Shapley value.
Hence, 0 < /P (w+ev™) =y (w+ev™) =yl (w) =’ (w) + eyl (™) — egy? (™)
[by linearity of y”] = swf(v”’) — e”(v™) [since 1 and n are substitutes in w] =

—1 -1 -1 -1
81<<n ) +(n ) >b’" [using formula 3.1]. So, b,, >0 for allme M.
m

n\\m-—1

Conversely, suppose ¢ is a b-weighted Shapley value for which b,, > 0
for all m e M. By theorem 3.1, ¢ is linear and symmetric. Using formula

-1 -1
3.1,weobtainthatwib(w)—zpj”(w):1<(n_11> +<"_1> >2meMbm'

n m — m

D isi=m W(S) = > sj=m w(S) | . If player i is favored over player j in the M-
ieS i¢S
jéS jiS . .
game w e Qy, then the last bracketed term in the above expression for
Wl (w) — wj” (w) is nonnegative. Since the b,, are also nonnegative, it follows
that i (w) — xpj”(w) > 0. Hence, ¢ is player monotone. H

5. Formulation independence

Consider the following joint cost allocation problem. Suppose each player
must make use of some shared resource, and the most economical method of
obtaining a sufficient amount of the shared resource for each player in a co-
alition S results in a cost of ¢(S). If all players cooperate, what is a fair way to
allocate the total cost ¢(N)? There are at least two reasonable ways to make
use of a cooperative game allocation method ¢ to solve this joint cost allo-
cation problem. First, define the worth of coalition S to be the negative of its
cost, w!(S) = —¢(S), and then allocate the total cost via the negative of the
allocation method: —g;(w') would be the cost allocated to player i. Second,
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define the worth of coalition S to be the savings resulting via cooperation,
w2 (S) =3, g c({i}) —¢(S), and then allocate the total savings via the alloca-

tion method: ¢({i}) — ¢;(w?) would be the cost allocated to player i. It would
be desirable for the cost allocation not to depend upon the solution approach
used, that is, —¢,(w!) = ¢({i}) — @;(w?). Our next condition ensures this.

The zero-normalization of the M-game w is the M-game w defined by the
formula w(S) = w(S) — >, w({i}). an allocation method ¢ is formulation
independent on the collection Q) if ¢;(w) = ¢;(W) + w({i}) for all w € 2,, and
i € M. Note that the equality of this definition is equivalent to the last equality
of the previous paragraph if we set w = —c. Young (1994) calls formulation in-
dependence, “‘invariance in direct costs.” Formulation independence and pro-
portionality (p(aw) = ap(w) for all positive real numbers ¢ and M-games w,
which is implied by linearity) is equivalent to another property often cited in the
literature: covariance with respect to strategic equivalence (¢;(v) = ap;(w) + b;
for all players i € N, positive real numbers a, real numbers b;, and M-games
v and w satisfying v(S) = aw(S) + >, g b; for all coalitions S = N). The fol-
lowing theorem characterizes linear, symmetric, and formulation independent
allocation methods.

Theorem 5.1. Suppose the set of known coalition sizes M contains 1. Suppose
the collection of M-games Q2 is a convex cone, is symmetric, and contains its
zero normalizations. The allocation method ¢ on Qy is linear, symmetric, and
Sformulation independent if and only if ¢ is a b-weighted Shapley value satisfying

ZmeMbm =n.

Proof: We begin by determining a relationship between the b-weighted Shapley
values of an M-game and its zero-normalization:

wi(w) = i ()

(7)) S -ws)

meM |S|=m
ieS

m

(", 1)1S2m(w(S> —w(s))

i¢S

[using formula 3.1]

=32Mb (m__ll)22<2<{1}>>

2 Bl
i¢:Sm '€
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[using the definition of zero-normalization]

Swnar S safwen+ (271 (273)

jEN meM—{n}

« Zl}l/v<{j}><”ml>l<;_21> > W

jeN—{i jeN—{i}

[separating out the m = n term of the outside summation and
reversing the double summations over coalitions and players]

:—Zw {j}) + Z b | w({i}) — w({j})

/eN meM {n} JEN*{i}

1 .

:—w{} > bw +- 1—— ST obw | > w{ih
meM meM {n} jeN—{i}

=w({i}) + (Zb ) {})—n—l > wilih

meM jeN—{i}

Thus, ¥ (w) = (%) 4+ w(i) if and only if

(z bm—n> ((n—l)w({i})— ) w({m):o

meM jeN—{i}

Suppose ¢ = y” where ZmE ybm =n. By theorem 3.1, (p is linear and sym-
metric. By the result of the previous paragraph, ¢’ (w) = (i) + w({i}) for all
M-games w, and so ¢ is formulation independent.

Conversely, suppose ¢ is an allocation method on £, Wthh is linear, sym-
metric, and formulation independent. By theorem 3.1, ¢ = ¥ for some b sat-
1sfy1ng b, = 1. We need to show that b can be chosen so that Zme ybm=n.
We first consider the case when w € Q, implies w(l) = w(2) =--- = w(n). In
this case, the expression b, mult1p11es in equation 3.1 always equals zero. So,
changmg b does not change x// Hence, we can choose b = n — ZmeM_{l} bm

We now consider the case when there is a we Q) and i, j ¢ N satisfying
w({i}) # w({j}). Without loss of generality, we can assume that i is chosen so
that w({i}) > w({/}) for all j € N and w({i}) > w({/}) for some j € N. Since
¢ 1s formulation independent, the result of the proof’s first paragraph yields
(> mers bm —n)a =0 where a > 0. Hence, >, bn=n 1

Formulation independence and margin monotonicity are largely incom-
patible properties as shown by the following theorem.

Theorem 5.2. Suppose the set of known coalition sizes M contains 1. Suppose
the collection of games Qy; is a convex cone, is symmetric, contains its zero
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normalizations, and has a nonempty interior. The reduced Shapley value is for-
mulation independent on Q) if and only if M = N.

Proof: By theorem 3.1, the reduced Shapley value is linear and symmetric. So,
theorem 5.1 implies that the reduced Shapley value is formulation independent
if and only if it equals a b-weighted Shapley value satistying >, ., bm = 1.
Since Q) has a nonempty interior, theorem 3.2 implies that the reduced Shap-
ley value is a b-weighted Shapley value if and only if b,, = 1 for all m e M.
Therefore, the reduced Shapley value is formulation independent if and only if
n=>y .yl =|M|whichis trueif and onlyif ¥ =N. N

The preceeding two theorems suggest that the reduced Shapley value need
not be the best value to use in many circumstances. A possible alternative is the
normalized Shapley value y = " where b,, = 1 forallme M — {l} and b =
= e n bn. By theorem 5.1, the normalized Shapley value is formula-
tion 1ndependent and so ,(w) = w({ i}) + (%) = w({i}) + (W) [since b
does not affect * () because w({i}) = 0 for all i € N], that is, J/,(w) allocates
to player i the player’s individual worth and the player’s reduced Shapley value
in the zero-normalized game. Of course, by theorem 4.1, the normalized Shap-
ley value must not be margin monotone. The following example illustrates the
differences between the formulation independent normalized Shapley value and
the margin monotone reduced Shapley value.

Example 5.3. Suppose M = {1,n}. The reduced Shapley value is given by the

1 1
i w({i}) +o (w(N) - ﬁZjeN w({j})). The normal-
- 1
ized Shapley value is given by the formula ,;(w) = w({i}) +Z(W(N)—

formula y;(w) =

>_jen w({J})). An interpretation of the normalized Shapley value formula is
that each player is first allocated his or her individual worth, and then the re-
maining benefits due to cooperation are divided evenly. Let the M-game w be
defined by w(N) = 2 and w({i}) = 1 for all j € N. Clearly, all pairs of players

are substitutes, and so ¥, (w) =y, (w) = % Let the M-game v be defined by

o(N)=v({1}) =1 and v({j}) =0 for all j € N — {1}. Player 1 is marginally
favored by both w over v and v over w. Since the reduced Shapley value is

. . 2 . .
margin monotone, it follows that v, (v) =y, (w) = p Since the normalized

Shapley value is formulation independent, v, (v) = v({i}) + ;(¢) = 1. One
interpretation of v is that player 1 generates all of the potential benefits of
cooperation, and so player 1 should be allocated the entire amount of benefits.
It is also difficult to interpret the two games as being equivalent from player
1’s perspective. These interpretations support the normalized over the reduced
Shapley value.

The results of this section suggest that the reduced Shapley value should
not be used as a value for partially defined games because it is not formula-
tion independent and margin monotonicity is not intuitively appealing when
worths of singleton coalitions are changed. Although the normalized Shapley
value has been suggested as an alternative, there are many other linear, sym-
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metric, and formulation independent allocation methods according to theo-
rem 5.1. Finally, it should be noted that the reduced and normalized Shapley
values are identical whenever 1¢ M, M = N, or Q contains only zero normal-
ized games.

6. Subsidy freedom

Player i is null in the N-game w if w(S) = w(S — {i}) for all coalitions S con-
taining i. We are again using the convention that w(¢) = 0. Player i is null in
the M-game w with respect to Q if i is null in every Q-extension of w. An al-
location method ¢ is subsidy free if p;(w) = 0 whenever w € ), and i is a null
player. The subsidy freedom property has also been called the null player ax-
ioms. An interpretation of subsidy freedom is that zero is the fair share for a
player that contributes zero worth to any coalition joined. In the literature,
subsidy free has also been called the null player axiom. Shapley’s (1953) effi-
ciency axiom, called the carrier axiom in the subsequent literature, is logically
equivalent to subsidy freedom, given our definition of an allocation. In Exam-
ple 5.3, M = {1,n} and v defined by v(N) = v({1}) = 1 and v({,}) = 0 for all
jeN — {1}, players 2,3, ..., n are null with respect to zero-monotonic games,
but ¥, (v) # 0. Hence, the reduced Shapley value need not be subsidy free.

Notice that subsidy freedom is the first condition we have stated which
crucially depends on the underlying space 2 of N-games rather than the space
Q) of M-games. For example, subsidy freedom will not impose any restric-
tions on our choice of an allocation method if 2 contains no N-game with a
null player. This occurs when € is the collection of strictly superadditive games
{w:w(SuT)>w(S)+ w(T) for all disjoint coalitions S and 7'}. So, subsidy
freedom is useful as a restrictive condition only if Q contains games with null
players. Furthermore, 2 cannot be “too large”: if Q is the collection of all
N-games and M # N, then no M-game w € Q) has a null player even though
many N-games have null players. So, our first goal is to develop appropriate
conditions on £ in order to generalize Shapley’s characterization theorem for
linear, symmetric, and subsidy free allocation methods on N-games to charac-
terization results on M-games.

The unanimity game u® on the unanimity coalition R is defined by u®(S) =
1if R = S and u®(S) = 0 otherwise. We will write u® instead of u® when
we wish to make it clear that a unanimity game is an M-game, and so defined
only on coalitions S satisfying |:S| € M. Unanimity games play a crucial role in
Shapley’s (1953) characterization of the Shapley value on cooperative games
because symmetry and subsidy freedom uniquely determine the allocation for
a unanimity game: players not in the unanimity coalition must be null and so
are allocated zero by subsidy freedom, and the players in the unanimity coal-
tion are substitutes and so are allocated equal amounts by symmetry. Since the
unanimity games form a basis for the space of all games, linearity can then be
used to extend the definition of the allocation method to all games. Unfortu-
nately, the allocation for a partially defined unanimity game may not be deter-
mined uniquely by symmetry and subsidy freedom because players outside of
the unanimity coalition need not be null. Proposition 6.1 shows that the crucial
issue, under a broad set of circumstances, is whether the unanimity M-game has
a unique Q-extension.

Recall that the N-game w is zero-monotonic if w(S) + w({i}) < w(S v {i})
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for all coalitions S and players i ¢ S. In a possible allocation problem, adding
a player to an already formed coalition should not be detrimental because one
way for the expanded coalition to “cooperate” is for the original coalition and
new player to continue to act separately. Note that w is zero-monotonic if and
only if its zero normalization W is monotone, that is, w(S) < w(T) for all co-
alitions S and 7T satisfying S = T.

Proposition 6.1. If the unanimity M-game u®™ has the unique Q-extension
u® N then each player i e N — R is null in u® M. Conversely, if each player i e
N — R is null in the unanimity M-game u®™ | M contains 1, and Q contains only
zero-monotonic games, then u®M has the unique Q-extension u®" .

Proof: Clearly, each player i € N — R is null in u®" . Since u®" is the unique
Q-extension of u® ™ each player i e N — R is null in u®M

Conversely, suppose each player i € N — R is null in «®M M contains 1,
and Q contains only zero-monotonic games. Suppose # is an 2-extension of
u®M_ We will show that & = u®". Suppose S is a coalition, and consider the
following three cases. First, suppose R = S. Let {ij,i2,...,ix} = N — S. Since
(N — S) n R = ¢, the players in N — S are null. Hence, a(S) = a(Sv {i1}) =
a(Suii,ir})=-=ua(N)=ulM(N)=1. Second, suppose |S| > |R| and
R & S. Then k = |S| — |R| > 0, and there exist ij, i3, . . ., ik, ix+1 € S — R. Since
i1,i2, ..., are null, it follows that #(S) =a(S—{i}) =a(S—{i,ir})=---=
ﬁ(S_ {ilvin sy lk}) :uR’M(S_ {ilvin ) ik}) =0 [SiIlCC |S_ {i17i27 CERE) ik}|
= |R| € M, and ix.| € S — R implies that S — {i,is,...,ix} # R]. Third, sup-
pose |S| < |R|. Then there exist a player i € S and a coalition T # R satisfying
|T| = |R| and S < T. Since 2 contains only zero-monotonic games, # must be
zero-monotonic. Hence, 0 =u®M ({i}) =a({i}) <a(S) <a(T) =u®M(T) =0,
and so @(S) = 0. Thus, u® ™ has the unique Q-extension u®~. W

The theorem suggests the following condition would be useful for charac-
terizing allocation methods satisfying subsidy freedom. The collection of M-
games Q) is unanimity proper if u®M e Q); and has the unique Q-extension
u®N for each coalition R satisfying |R| € M — {n}.

Theorem 6.2. Suppose the collection of M-games Q) is a convex cone, sym-
metric, and unanimity proper. If a linear, symmetric, and subsidy free allocation
method exists on Qyy, then it is the b-weighted Shapley value satisfying b, =

n m—1
(r) _ZmEM(r—l >bmf0rallreM.

m>r

Proof: By theorem 3.1, ¢ is a b-weighted Shapley value (satisfying b, = 1).
Note that the formula in the statement of the theorem also yields b, = 1. Sup-
pose now that r € M — {n}, and R is a coalition satisfying |R| = r. By Propo-
sition 6.1, each player i € N — R is null in the unanimity game u®* . Since ¢
is subsidy free, ;(u®*) =0 for all i e N — R. Using formula 3.1, we obtain
0=y (")

1 n—1Y\" ,
:Zme(m_J {S:|S|=m,iec S R< S}

meM
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-1
—1§:bm(” 1) {S:|S| =m,i¢S,R< S}
n m

meM

1, (n—1\" 1 n—1\"/n—r-1
__Ebr< ¥ ) +Zn;/lbm<<m—l> (m—r—l)
r<m<n
I\ '"/n-r—1
() L) e
m m-—r n
Rearranging and simplifying this equality, we obtain
n—1 n—1\"/n-r—1
bl‘ bﬂl
mEZM < r ><<m—l) (m—r—l)
r<m<n
I\ ' /n-r-1 —1
()L e
m m-—r r
n n—1 m—1
- bn* bm
()G 2 (05
r<m<n

_ (’Z) _m;4<’:’__11>b,,1. n

m>r

We can now reprove Shapley’s (1953) theorem as a corollary.

Corollary 6.3. Suppose the collection of N-games 2 is a convex cone, symmetric,
and contains the unanimity games. The unique linear, symmetric, and subsidy free
allocation method on Q = Qy is the Shapley value.

Proof: Clearly, Q is unanimity proper. By theorem 6.2, if the allocation
method ¢ is linear, symmetric, and subsidy free on Q,;, then ¢ is the b-

-1
weighted Shapley value satisfying b, = (:) — D ol ( ’:j 1>bm for all
r e N. We now prove, by induction, that b, = 1 for all » € N. Clearly, b, = 1.

n n m—1 n
Ifbr+1:br+2:"':bn:1:thenbr: <r>_2mr+1(r_l > - <V)_

-1
Yot <(m> — (m >> [by Pascal’s Triangle equality] = (r) [since
r r r

the sum is telescoping] = 1. Thus, b, = 1 for all r € N. Finally, it is clear from
formula 2.2 that when M = N, the Shapley value is subsidy free. H

The allocation method described by theorem 6.2 is the normalized Shapley
valueifand only if M = {k,k+1,...,n} or M = {1,k,k+1,...,n} for some
integer k satisfying 2 < k < n. The allocation method described by theorem
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6.2 is the reduced Shapley value if and only if M = N — {1} or M = N. The
proofs of these two remarks is similar to the induction part of the proof of
Corollary 6.3.

While the allocation method described by theorem 6.2 is linear and sym-
metric, it is important to emphasize that theorem 6.2 does not state whether
the allocation method it describes is actually subsidy free. Depending on the
circumstances, either the allocation method described by theorem 6.2 will be
the unique linear, symmetric and subsidy free allocation method, or there will
exist o linear, symmetric, and subsidy free allocation method. Of course, if 2y,
is not unanimity proper, then there can be linear, symmetric, and subsidy free
allocation methods not described by theorem 6.2. Describing some of the pos-
sibilities is the primary goal of this section.

Before we procede to the main characterization results of this section, we
state and prove two useful lemmas. Given the importance of the unanimity
proper condition, the first lemma states some sufficient conditions for unanim-
ity M-games to have unique Q2-extensions. The second lemma shows that sub-
sidy freedom is usually a stronger condition than formulation independence.

Lemma 6.4. Suppose the set of known coalition sizes M contains 1, the co-
alition R satisfies |R| € M — {n}, and the collection of N-games Q contains the

unanimity game u®N. The unanimity M-game u®M has the unique Q-extension
ul N if any of the following conditions hold: (1) |R| =1 and Q contains only
zero-monotonic games, (2) n—1e M and Q contains only zero-monotonic
games; and (3) Q contains only convex games.

Proof: By supposition, u®" is an Q-extension of the unanimity M-game u® M,
Supp(g{s?V i is an Q-extension of u®™ . For each condition, we will show that
u=u",

Suppose condition (1) holds. Then the zero normalization v = u®M sat-
isfies v(S) = 0 for all coalitions S satisfying |S| € M. If v is a zero-monotonic
extension of v and S is a coalition containing a player i, then 0 = v({i}) =
8({i}) < 9(S) < 8(N) = v(N) = 0 which implies #(S) = 0. Now & must be the
zero normalization of # which implies that & = u®",

Suppose condition (2) holds. If R = S, then by zero-monotonicity 1 =
ulM(R) = 4(R) <u(S) <a(N)=ulRM(N) = 1 which implies that a(S) = 1.
Given condition (1), we may assume |R| > 1. If R & S, then there exist players
ie S and je R—S. By zero-monotonicity and [N — {j}| € M, it follows that
0 =uRM{i}) =a({i}) <a(S) <a(N —{j}) = u®M(N —{j}) = 0 which im-
plies that #(S) = 0. Hence, 4 = u®".

Suppose condition (3) holds. Given condition (1), we may assume |R| > 1.
Suppose S is a coalition, and consider the following three cases. First, suppose
|S| < r. Then there exist a player i € S and a coalition 7 # R satisfying S < T
and |T| =r. Hence, 0 = u®M({i}) = a({i}) <a(S) <a(T) = u®M(T) =0,
and so #4(S) =0. Second, suppose R < S. Hence, 1 =u®M(R)=u(R) <
u(S) <a(N) =u®M(N) =1, and so @(S) = 1. Third, suppose |S| > r and
R&S. Choose i€ S. Let T = (N —S)uUR. Since |SnT| <r, the first case
implies #(S ~ T) = 0. Since R = T, the second case implies #(7) = 1. Hence,
0=ulM{i})=a({i})<a(S) <a(SuT)+a(SAT)—a(T)=a(N)+0—-1=
uRM(N) —1 =0, and so #(S) = 0. Taking the three cases together, we obtain
thata = u®V. H
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Lemma 6.5. Suppose M is a set of known sizes containing 1. Suppose the col-
lection of games Q is a convex cone, contains its zero normalizations, contains
the singleton unanimity games, and contains only zero-monotonic games. If the
allocation method ¢ is linear and subsidy free, then ¢ is formulation independent.

Proof: Suppose w e Qp. Then w= i+ Zjer({j})u{f}’M. Since Q con-
tains its zero normalizations and the singleton unanimity games, W € Q2
and ul/M e Q) for all j e N. Since ¢ is linear, p(w) = p(iw) + >,y w({/}) -
p(ut/hM) Since Q contains only zero-monotonic games, condition (1) of
Lemma 6.4 implies that «{/}" is the unique Q-extension of u{/} Clearly,
each ke N — {j} is null in «¥/»" and so in ul/}¥. Since ¢ is subsidy free,

¢ (ut/hM) =0 for all ke N —{j}. Since ¢ is an allocation method, ¢; (u'/}M) =

”{j}’y(N) - ZkeN—{j} (ﬂk(”{‘j}’M) = 1. Hence, ¢;(w) = ¢;(W) + ZjeN w({/})-
0;(wtH M) = ¢.(w) + w({i}). Thus, ¢ is formulation independent. M

We now turn to characterization theorems for linear, symmetric, and sub-
sidy free allocation methods on four special classes of cooperative games. We
start with the largest class of games, zero monotonic, and work our way to the
smallest class of games, convex. The next theorem provides a complete char-
acterization for zero monotonic games. Notice that when Q is the class of zero
monotonic games, 2, is unanimity proper if and only if n — 1 € M. The state-
ment and proof of the theorem do not notice whether ©,, is unanimity proper.

Theorem 6.6. Suppose the set of known coalition sizes M contains 1, and Q is
the collection of zero-monotonic games. If M = {1,k k+1,...,1,n} where 1 <
k <1 < n, then the unique linear, symmetric and subsidy free allocation method
on Q) is the normalized Shapley value. Otherwise, there is no linear, symmetric,
and subsidy free allocation method on Q).

Proof: Suppose ¢ is a linear, symmetric, and subsidy free allocation method
on Q). We first show that if ¢ exists, then ¢ must be the normalized Shapley
value. By Lemma 6.5 and Theorem 5.1, ¢ is a b-weighted Shapley value where
b satisfies Y,y bm = n. Now for m e M — {1, n}, define the M-game v™ by
v"™(S) =11if |S| > m, v"(S) =11if |S|=m and 1¢ S, and v"*(S) = 0 other-
wise. Suppose ¥ is a zero-monotonic extension of v”’. Given any coalition S,
there is a player i € S, and so {i} = S = N. Since ¢ is zero-monotonic, 0 =
v"™({i}) < 8(S) < v™(N) = 1. If | S| < m, then by adding some players, includ-
ing player 1, to S, we can construct a coalition 7T satisfying S U {1} = T and
|T| = m.So,0 < (S) < v"(T) = 0 which implies 5(S) = 0. If |\S| > m, then by
removing some players, including player 1, from S, we can construct a coali-
tion R satisfying R = S — {1} and |R| = m. So, 1 > #(S) = v"(R) = 1 which
implies 6(S) = 1. Thus, ¢ is uniquely determined to be #(S) = 1 if |S| > m,
o(S)=11if |S|=m and 1 ¢S, and 5(S) = 0 otherwise. Clearly, ¢ is zero-
monotonic, and so v™ € Q). Player 1 is null in ¢ and so is null in v™. Since

1
¢ =" is subsidy free, 0 = y! (v) = p (1 —b,,) [by formula 3.1]. Hence, b, = 1

for all m e M — {1, n}. Since we already have that b, =1 and >, _,,bm =n,
it follows that ¢ is the normalized Shapley value.

Suppose now that M ={l,k,k+1,...,I,n} where 1 <k <[/ <n. By
theorem 3.1, the normalized Shapley value is linear and symmetric. We now
show that the normalized Shapley value s is subsidy free. Suppose player i is
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null in w € Q),. We must show that ,(w) = 0. Note that for zero-monotonic
M-games, player i is null in w implies player 7 is null in the zero normalization
iv. Since  is formulation independent, ,(w) = 0 if (%) = 0. Hence, we may
assume that w is zero-normalized. Consider the N-game w defined by w(S) =
w(N)ifn>|S| > 1, w(S) =w(S)ifl > |S| =k, and w(S) =01if k > |S]| > 1.
Since w € Q,y, it follows that w is a zero-monotonic extension of w. Since
player i is null in w, player 7 is null in w. We now consider the marginal con-
tributions w(S) — w(R) where i € S, |S| e M, R = S — {i}, and |R| = p(|S]). If
|S| = 1, then w(S) = w({i}) = 0 [since w is zero-normalized] = w(¢) = w(R).
If |S| =k > 1, then w(S) = w(S) = w(S — {i}) [since i is null in W] = 0 = w(R).
If|S|le{k+1,k+2,...,1}, then w(S) = w(S) = w(S — {i}) [since i is null in
w]=w(S —{i}) =w(R). If |S| =n > [, then w(S) = w(N) = w(N — {i}) [since
i is null in W] = w(X). Thus, the marginal contributions all equal zero. Since
Y (w) = y(w) when w is zero-normalized, formula 2.2 implies that y,(w) = 0.
Therefore, the normalized Shapley value  is subsidy free.

Suppose now that M # {1,k,k+ 1,...,/,n} for all integers k and / satisfy-
ing 1 <k <! <n. Then there exist k,/ e M satisfying | <k </—-1<n—-1
and k < m < [ implies m ¢ M. Define the M-game w by

2, if |S|>/and|S|eM

if |[S|=/and1¢S

if |S|=1,1€S,andneS
if [S|=1,1eS,andn¢sS
if |S|=k, 1¢S, andneS
if |S|=k, 1¢S,andn¢sS
if |S|=kand1esS

, if |[S|<kand|S|eM

= IR=TR N SR SR

Suppose W is a zero-monotonic extension of w. If / < |S| < n, then players
can be removed from S to construct a coalition R = S — {1} satisfying |R| = /.
Since W is a zero monotonic extension of w, it follows that 2 = w(R) < w(S) <
Ww(N) =2. If k <|S| </ and n € S, then players can be removed from S to
construct a coalition R = S — {1} satisfying |R| = k and n € R, and players can
be added to S to construct a coalition T satisfying |7| =/and Su{l,n} = T.
Since w is zero-monotone and an extension of w, it follows that 2 = w(R) <
w(S) < w(T)=2.1f k <|S| </andn ¢ S, then players can be removed from
S to construct a coalition R = S — {1, n} satisfying |R| = k, and players can
be added to S to construct a coalition 7 = S u {1} satisfying || =/andn ¢ T.
Since w is a zero monotonic extension of w, it follows that 1 = w(R) < w(S) <
w(T) = 1. If |S] < k, choose a player i € S and a coalition 7 satisfying S U
{1} €T and |T| = k. Since 1 is a zero monotonic extension of w, it follows
that 0 = w({i}) < w(S) < W(T) = 0. Thus, W is uniquely defined by

N

if |S]>1
2, if k<|S|</landneS
1, ifk<|S|<landn¢S
0, if |S] <k
w(S), if [S|eM
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Clearly, w is zero-monotone, so w € ). Clearly, player 1 is null in w and
so in w. Since ¢ is subsidy free, 0 = ¢, (w) = ¥, (w) [by first paragraph of proof]

— 1 (w) [since w({i}) =0 for all ieN]—i+1(’;_ll>l<2<’;‘22)+

(A 6 2)

[using formula 2.1] = by straight-forward but tedious algebra] # 0.

I-1-k [
nn—1)
This contradiction (0 # 0) implies that there is no linear, symmetric, and sub-
sidy free allocation method on Q,,. H

We now consider a class of games in which the size of the coalition is
at least as important as the composition of the coalition in determining its
worth. The N-game w is size monotonic if its zero normalization W satisfies
iw(R) < w(S) for all coalitions R and S satisfying |R| < |S|. Note that u®" is
size monotonic only if |R| € {n — 1,n}, and so the class of size monotonic M-
games is 7of unanimity proper unless M = {n — 1,n}. Yet, we obtain the best
possible result: existence of a unique linear, symmetric, and subsidy free allo-
cation method for all possible M containing 1.

Theorem 6.7. Suppose the set of known coalition sizes M contains 1, and Q is
the collection of size monotonic games. The unique linear, symmetric and sub-
sidy free allocation method on Q) is the reduced Shapley value.

Proof: Suppose ¢ is a linear, symmetric, and subsidy free on 2,,. By Theorem
3.1, ¢ is a b-weighted Shapley value. Now for m € M — {n}, define the M-game
o™ by v"(S) =1 if |S] > m, v"(S)=11if |[S|=m and 1 ¢ S, and v (S) =0
otherwise. It is easily seen that v™ has a unique size monotonic extension,
and player 1 is null in the extension and v"”. Since ¢ = Y is subsidy free, 0 =

1
O :Z(l —by,) [by formula 3.1]. Hence, b,, =1 for all me M — {n}.

Since we already have that b, = 1, it follows that ¢ is the reduced Shapley
value.

By Theorem 3.1, the reduced Shapley value i is linear and symmetric. We
now show that  is subsidy free. Suppose player i is null in w € Q. Let ¢,, =
max{w(R) : |[R| = m} for all me M. Recall p(s) = max{0,me M : m < s}.
Consider the N-game W defined by w(S) = w(S) if |S| € M, and w(S) = ¢,s))
if | S| ¢ M. Clearly, W is a size monotonic extension of w. Since player i is null
in w, player i must be null in w. Suppose R and S are coalitions satisfying
ieS, |S|leM, RcS—{i}, and |R| = p(|S]). If |R| =|S|— 1, then w(S) =
w(S) =w(S —{i}) =w(R) =w(R). If |R|<|S|—1, then w(S)=w(S)=
W(S — {i}) = ¢,qsp = W(R U {i}) = Ww(R) = w(R). In either case, the marginal
w(S) —w(R) = 0. Now by formula 2.2, it follows that y;(w) = 0. Thus, V is
subsidy free. H

For an unspecified cost allocation problem, the most reasonable class of
games to consider are the superadditive ones. Recall that w is superadditive if
w(R) + w(S) < w(Ru S) for all disjoint coalitions R and S. One way for dis-
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joint coalitions to “‘cooperate”” would be for each to work independently, and
so the savings obtained by the union of the two disjoint coalitions should be
at least the sum of the savings each coalition obtains separately. The next the-
orem characterizes the linear, symmetric, and subsidy free allocation methods
for unanimity proper classes of superadditive games.

Theorem 6.8. Suppose the set of known coalition sizes M contains 1 and
n— 1, and Q is the collection of superadditive games. If M = {1,1,1+1,... n}
where 2 < I < n — 1, then the unique linear, symmetric and subsidy free alloca-
tion method on Q) is the normalized Shapley value. Otherwise, there is no lin-
ear, symmetric, and subsidy free allocation method on Qy;.

Proof: Suppose M contains 1 and n — 1. Let k and [ satisfy 1 <k, k+2 <
I<n—1keM,k<m<Iimplies m¢ M, and [ <m < n implies me M.
Suppose ¢ is a linear, symmetric, and subsidy free allocation method on Q.
By condition (2) of Lemma 6.4 and Theorem 6.2, ¢ is a b-weighted Shap-

-1
ley value where b satisfies b, = (n) — Y meM (m )bm for all re M. By
r

m>r r— 1
the same argument as used in the proof of corollary 6.3, it follows that b, =
[—1 . .
bp_y=---=b;=1 and b, = < X ) If k=1, then ¢ is the normalized

Shapley value, and we must show that ¢ = is subsidy free. If kK > 1, then we
must show that ¢ is not subsidy free, which we will do in two cases: k > g and

n
> k>1.

Suppose k = 1. We will show that ¢ =  is subsidy free. Suppose player i is
null in w € Q),. We must show that y;,(w) = 0. Note that for superadditive M-
games, player i is null in w implies player 7 is null in the zero normalization .
Since  is formulation independent, y,(w) = 0 if y,(%w) = 0. Hence, we may
assume that w is zero normalized. Consider the N-game w defined by w(S) =
w(S) if |S| = [, and w(S) = 0if |S| < /. Clearly, w is a superadditive extension
of w, and so player i is null in w. Hence, w(S) = w(S — {i}) for all S satisfying
|S| > 1, and w(S) = w(S —{i}) =0 if |[S| =/ and i € S. Now using formula
3.1 with the b,, as defined above, we obtain y,(w) = 0. Thus, ¥ is subsidy free.

Suppose k > g We now show that ¢ is not subsidy free. Define the M-

game v by 0(S) =11if |S|=L1+1,....,n,0(S)=11if |S|=k and n ¢ S, and
v(S) = 0 otherwise. Suppose o is a superadditive extension of v. If |S| < £,
then there is a coalition 7 satisfying Su {n} = T and |T| = k. Because o is
superadditive and zero normalized, it follows that 0 = ", _¢9({i}) < 9(S) =
0(S)+ > cr_s0({i}) <9(T) =0, and so 9(S) = 0. If | S| > k, then there is a
coalition R satisfying R = S — {n} and |R| = k. Because ¢ is superadditive
and zero normalized, it follows that 1 =6(R) + ), s g 0({i}) <9(S) =9(S) +
Yien_s0({i}) <9(N) =1, and so (S) = 1. It is easy to see that v is super-
additive, and so v has a unique superadditive extension. Player # is null in o,
and so player # is null in v. Nonetheless, using formula 3.1 with the 5,, as de-

1 -1
fined above, we obtain ¢,(v) = . (1 - ( X )) # 0 [since / — 1 > k]. Hence,

@ is not subsidy free.
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Suppose g > k > 1. We will show that ¢ = y is not subsidy free. Define the

M-game v by v(S) = 1if |Sn{1,2,...,2k — 1}| = k, and v(S) = 0 otherwise.
Suppose ¥ is a superadditive extension of v. If |[Sn{1,2,...,2k — 1}| > £,
then there is a coalition R satisfying R < Sn{l,2,...,2k — 1} and |R| = k.
Because ¢ is superadditive and zero normalized, it follows that 1 = 6(R) +
Sres_r0({i}) < 8(8) = 8(S) + Xyen_s 8({i}) < 6(N) = 1, and so i(S) = 1.
If |Sn{L,2,...,2k—1}| <k, then |(N —S)n{l1,2,...,2k — 1}| > k which
implies 9(N — S) = 1 by previous work. Because ¢ is superadditive and zero
normalized, it follows that 0 = o(N) — 6(N — ) > 9(S) = >, .s0({i}) =0,
and so 9(S) =0. It is easy to see that & is superadditive, and so v has a
unique superadditive extension. Player » is null in 9, and so player n is null
in v. Nonetheless, using formula 3.1 with the b,, as defined above, we ob-

: 1 /n—1\" [—1\(n—1\"/2k—1 ,
tam%(v)—ﬁ<<l—l> q—( i >( i > ( K >> where ¢ is the

number of coalitions of size / containing player n and at least k players

Ln—1\"
from {1,2,...,2k — 1}. After some algebra, we obtain ¢,(v) = > (7 | ) '

2k—1 n—1-—k 2k—1 n—1-kY\ .
<q < « )(Z—l—k))NOW ( k )(l—l—k) is the number
of ways of first coloring k players from {1,2,...,2k — 1} blue and then col-
oring player n and / — k — 1 of the other n — k players red. Each such color-
ing (by combining the blue and red colored players) results in a coalition

of size / containing player n and at least k players from {1,2,...,2k — 1}.
Because there are more distinct colorings than there are resulting coalitions,

2k—1 —1-
< X > <7_1_:> >¢, and so ¢, (v) <0. Hence, ¢ is not subsidy free. W

The only general result for superadditive games when 1 e M butn — 1 ¢ M
known to the author is that if a linear, symmetric, and subsidy free allocation
method exists, then it is unique. The proof uses the same games and arguments
as in the last two cases of the proof of Theorem 6.8. Sometimes the defined al-
location method is subsidy free, and other times it is not. Although a general
result is not yet available, it is useful to consider one example.

Example 6.9. Let the set of known coalition sizes M = {1,2,5}, and Q be the
collection of superadditive games. Then the unique linear, symmetric and sub-
sidy free allocation method on £, is the b-weighted Shapley value satisfying
bs =1 and b; = b, = 2. The somewhat tedious proof is left to the reader. No-
tice that this allocation method is neither the reduced or normalized Shapley
value.

For our last characterization, we consider the class of convex games. The
N-game w is convex if w(R) + w(S) < w(RuU S) +w(Rn S) for all coalitions
R and S. It can be shown that w is convex if and only if w(R) — w(R — {i}) <
w(S) —w(S — {i}) for all coalitions R = S. Hence, convex games are useful
for modeling situations in which there are increasing returns to scale. Unfor-
tunately, linear, symmetric, and subsidy free allocation methods do not exist
for useful cases.
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Theorem 6.10. Suppose the set of known coalition sizes M contains 1, and Q
is the collection of convex games. If M = {l,n} or M = N, then the unique
linear, symmetric, and subsidy free allocation method on Qy is the normalized
Shapley value. Otherwise, there is no linear, symmetric, and subsidy free allo-
cation method on Q).

Proof: The conclusion for when M = N follows from Corollary 6.3. Sup-
pose M = {1,n} and ¢ is a linear, symmetric, and subsidy free allocation
method on Q. By condition (3) of Lemma 6.4 and Theorem 6.2, ¢ is the

normalized Shapley value: ¢,(w) =w({i}) + % (W(N) = >2;enw({7}))- By The-

orem 3.1, the normalized Shapley value is linear and symmetric. We now show
that it is subsidy free. Suppose player i is null in w. Define w by Ww(S) =
> jesw({j}) forall § # N. Clearly, w is a convex extension of w, and so player
i is null in w. Hence, w({i}) = w({i}) = 0 and w(N) = w(N) = w(N — {i}) =
dien—n WHIH) = 22en W(H{U}) = 22 en w({j})- Substitution of these results
back into the formula for ¢ yields ¢,(w) = 0.

For the remainder of the proof, suppose M # {l,n} and M # N. We will
show that there is no linear, symmetric, and subsidy free allocation method on
Q7. On the contrary, suppose ¢ is a linear, symmetric, and subsidy free allo-
cation method on ©,,. We will derive a contradiction by defining an M-game
w in which player 7 is null but ¢,(w) # 0.

By condition (3) of Lemma 6.4 and Theorem 6.2, ¢ is the h-weighted

-1
Shapley value satisfying b, = (2) — > e M(m >bm for all re M. In

m>r r— 1
particular, if k > 1 and k+ 1,k +2,...,ne M, then by the same argument
used in the proof of Corollary 6.3, it follows that 1 = b, = b, | = --- = byy,.

So, p(w) = y(w) if w(S) = 0 for all S satisfying |S| € M and |S| < k. Alter-

natively, if ke M and k+1,k+2,...,n—1¢ M, then b, =1 and by =
n n—1 n—1

(-G =)

Consider the special case n — 1 € M. Since M # N, there exists an integer
ksatisfying 1 <k <n—1, k¢ M, and k < m < n implies m € M. Define the
M-game w by w(S) = 1if {1,2,...,k} = S, and w(S) = 0 otherwise. Suppose
W is a convex extension of w, and S is any coalition. We will show what w(S)
must be. Choose i € S. Then 0 = w({i}) =w({i}) < w(S) < w(N)=w(N)=1
which implies 0 < w(S) < 1. If |S| < k, then by adding players to S, we can
construct a coalition T satisfying S = T, |T| =k + 1, and {1,2,...,k} &£ T;
hence, w(S) < w(T) =w(T) =0, and so w(S) =0. Now w({l,2,...,k}) >
w{L,2,....k,k+1}) + w({1,2,....k,k+2}) — w({l,2,...,k+2}) =
w{1,2,... kk+ 1) +w{1,2,... k,k+2}) —w({1,2,...,k+2}) =1+1—
1 =1, and so w({1,2,...,k}) = 1. Finally, if |S| =k and S # {1,2,...,k},
then Ww(S) < Ww(N)+w(Sn{1,2,....k}) = w(N-S)u{l,2,...,k}) =1+
0—1=0, and so w(S) = 0. Therefore, w must be the unanimity game on
{1,2,...,k}. Clearly, player n is null in # and so in w. Since ¢ is subsidy
free, p,(w) = 0. By a result in the previous paragraph, 0 = ¢,(w) = y,(w) =
W, (uRM — ) [where R={1,2,...,k} and v is defined by v(R)=1 and
v(S) = 0 otherwise] =y, (u® ™ —v) [since (uRN —v)(S)=0 if |S|¢ M] =
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k
and using formula 2.1] # 0. This contradiction implies that there is no linear,
symmetric, and subsidy free allocation method.
Consider the remaining special case n — 1 ¢ M. Since M # {1,n}, there
exists an integer k € M such that 2 <k <n—2 and k <m < n implies m ¢ M.
Define the M-game w by

—1\!
W, (uBNY — s (v) [since  is linear] = 0 — % (n > [since 7 is null in u®N

n—k, ifS=N

() 1, if |S|=kandn¢sS
w(S) =
0, if |[S|=kandnesS
0, if |S| <kand|S|eM

Suppose w is a convex extension of w, and S is any coalition. We will
show what w(S) must be by considering two cases. First, suppose |S| < k.
Choose a player i € S and a coalition 7 satisfying S {n} = T and |T| = k.
Hence, 0 = w({i}) = w({i}) < w(S) <W(T)=w(T) =0, and so w(S) =0.
Second, suppose |S| > k. Choose a player i # n and coalition R satisfying
ieRc S—{n}and |R| =k. So, w(R) =w(R) =1, and w((S — {i}) " R) =
w(R—{i}) =0since |[R— {i}| < k. Since w is convex, w(S) =w((S—{i}) UR) >
w(S — {i}) + Ww(R) — w((S — {i}) n R) = w(S — {i}) + 1. Repeating this argu-
ment / = |S| — k times, we obtain w(S) > w(R) + [/ where |R| =k and ne R
if and only if n e S. Hence, w(S) > 1+1=|S|—k+1if n¢ S, and w(S) >
0+17=|S|—k if neS. Applying this argument to S = N, we obtain that
W(N) = |N| — k. Since w(N) = w(N) = n — k, it follows that all the nonstrict
inequalities must be equalities. Thus, w(S) = |S| —k+ 1if n ¢ S, and w(S) =
|S| — k if n € S. Combining the results of the two cases, we obtain

|S| — k&, if |S|>kandnesS

S|—k+1, if|S|>kandn¢sS
W(S):{
0, if |S] <k

Clearly, player n is null in w and so in w. Since ¢ is subsidy free, ¢,(w) = 0.
By a result in the second paragraph of the proof, ¢, (w) = lﬁ,f(w) where b, = 1

n—1 n—k 1(n—1\/n—1Y"
and bk—( « ) Hence, 0= . _E< i )( i ) {S:|S| =k
_ ~1 _ _ _
andn¢S}|:n k ]11<nk )Sn k n-1_ k-1

— = - < 0. This con-
n n n
tradiction implies that there is no linear, symmetric, and subsidy free allo-
cation method. MW

7. Conclusion

The practioner must exercise caution in choosing an allocation method for
partially defined cooperative games. The axioms of linearity, symmetry, and
subsidy freedom, which uniquely determine the Shapley value on fully defined
cooperative games, characterize different allocation methods (sometimes non-
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uniquely) or no allocation method depending upon the class of partially defined
cooperative games under consideration. The axioms of symmetry and margin
monotonicity, which uniquely determine the Shapley value again on fully de-
fined cooperative games, characterize an allocation method that usually does
not satisfy subsidy freedom. The most positive results suggest the use of the
normalized Shapley value for zero monotonic or superadditive games and to
determine coalitional worths of the singletons and a block of the largest co-
alitions.

In the example examined in Section 2, we found that no zero monotonic or
superadditive extension had a Shapley value equal to the reduced (or normal-
ized) Shapley value. Notice that no linear, symmetric, and subsidy free alloca-
tion method exists for the example’s set of known coalition sizes. Conversely,
for all classes of partially defined cooperative games for which we have found
a unique linear, symmetric, and subsidy free allocation method, extensions al-
ways exist for which the Shapley value allocates the same way as the charac-
terized allocation method. Whether this relationship holds in general is an open
question. The nonexistence of linear, symmetric, and subsidy free allocation
methods for certain classes of games suggests that the linearity condition is too
strong.
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