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INFINITE PLAYER NONCOOPERATIVE GAMES
AND THE CONTINUITY OF THE NASH
EQUILIBRIUM CORRESPONDENCE*
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Worcester Polytechnic Institute

The usual definition of a noncooperative game is extended in two different ways: first, by
replacing the finite player set with a measure space, and second, by eliminating the player set
and considering a distribution of the players’ characteristics. Feasible strategy profiles and
Nash equilibria obtained from the two approaches are compared. The feasible strategy profile
correspondence is shown to be continuous. The Nash equilibrium correspondence is shown to
be upper hemicontinuous and nearly lower hemicontinuous on the class of convex and
equicontinuous games. These results show when it is reasonable to use an infinite player game
‘as an approximation of a large, but finite, player game.

1. Introduction. At times it is desirable to understand the strategic behavior of a
large number of interacting agents. For example, the economy or political mechanisms
of an entire country, commuter traffic patterns in a large city, or shareholder control of
a large corporation. In such situations it is natural to posit a continuum of agents so
that the mathematics is more tractable. Aumann’s study of markets [1] is a classic
example using cooperative games; Kannai and Peleg [11], Nti [14], and Housman [8]
are examples using noncooperative games. An assumption inherent in such an ap-
proach is that the continuous player model accurately represents the large, but finite,
player reality. Kannai [10] studied the validity of this assumption in the context of
market games by considering the continuity properties of the core correspondence on
the space of market games. This paper is in the spirit of [10), but is concerned with the
Nash equilibrium correspondence on the space of noncooperative games.

We first generalize the definition of a finite player noncooperative game in two
different ways so that games with an infinite-number of players can be considered. In
§3, this is accomplished by replacing the finite set of indices with a measure space (this
is the approach taken by Schmeidler [15]). In §4, this is accomplished by considering
the distribution of player characteristics (this is the approach taken by Mas-Colell
[13]). §4 also develops the relationship between these two generalizations in a manner
similar to the work of Hart, Hildenbrand and Kohlberg [7] on market economies. The
models formulated here generalize those of Schmeidler [15] and Mas-Colell [13] in one
significant respect: individual players can have a positive influence on other players’
payoffs. Mathematically, we allow the measure space to contain singletons and one
characteristic that a player possesses is her measure as a singleton. These more general
models are useful when a few of the millions of stockholders of a corporation hold a
significant proportion of the stock, or in an economy of oligopolist producers and
many consumers. '
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The continuity properties of the feasible strategy profile and Nash equilibrium
correspondences are studied in §5. The Nash equilibrium correspondence is shown to
be upper hemicontinuous and to have a weak lower hemicontinuity property. A general
Nash equilibrium existence theorem, which is a generalization of [15] and [13], is also
stated. ‘ ‘ ‘

Green [6) presents a different generalization of finite player noncooperative games
and proves that the Nash equilibrium correspondence thereby obtained is upper
hemicontinuous. The author believes the present formulation and results to be more
transparent and general than those in [6]. Also the existence and lower hemicontinuous
results of this paper have no counterpart in [6].

2. Notation and mathematical preliminaries. Throughout this section, X denotes a
complete separable metric space with the bounded metric d y, or simply d if the space
on which the metric is defined is clear from context. Note that any metric can be
bounded by considering min{1, d } without changing the topology of X.

Let B(w,dy) = {x € X: dy(w,x) < €} and B(W,dy) = {x € X: dx(w, x) <¢
for some w € W ). The symbols B (w, d), B(W), etc. are used when it is clear from
the context what the other parameters are. B(w, d) and so forth denote the closure of
B(w, d) and so forth. Let diam(W) = sup{d(r,s): r, s € wj.

ZF(X) denotes the space of nonempty, closed subsets of X topologized by the
Hausdorff metric d(K, L) = inf{e > 0: K C B(L, dy) and L € B(K,dy)}. F(X)
is complete.

X' (X) denotes the space of nonempty, compact subsets of X topologized by the
Hausdorfl metric. 2 (X) is complete and separable; if X is compact, then X'(X) is
compact [3, p. 354]. .

(X ) denotes the Borel subsets of X. Suppose (4, &, a)isa probability space (i.e.,
o is a o-field, and « is a countably additive, nonnegative, real-valued function on &/
satisfying a(A) = 1) with & containing all singletons of 4. If a € A, then a(a)
denotes a({a}), and we shall consider a as a real-valued function on A4, on occasion.
A function f: A — X is measurable ifVWe B(X): ffAW) e, itis sufficient to
verify for W € #(X). X(4, o, a) denotes the space of all measurable functions f:
A — X. A function F: A = F(X) is lower measurable if VW € #(X): F-(W) = {a
€ A: F(a) N W # @} € o/. We shall make use of the Measurable Selection Theorem
due to Kuratowski and Ryll-Nardzewski [12]: if F: A —» Z(X) is lower measurable,
then there exists a measurable f: 4 — X satisfying f(a) € F(a) for all a € 4.

€ ( X) denotes the space of bounded, continuous real-valued functions on X topolo-
gized by the supnorm |f| = sup{| f(x)]: x € X)}. €(X) is complete [5, p. 261]. If X
is compact, then €(X) is separable [5, Exercise V.7.17].

# ( X) denotes the space of probability measures on X endowed with the usual weak
topology, i.e., a base of open neighborhoods consists of sets of the form N(u, f.€) =
(ve M(X): |[fd(p—v)|<e} forp e #(X), f€ €(X), and € > 0. This topol-
ogy is metrizable by the Prohorov metric p(p, ») = inf{e > 0: p(E) <
v(E9) + ¢ and »(E) < p(E) + € for all Ee€%(X)} where E<= B(E,dy) [2,
Theorem 5, p. 238]. A subset M C H#(X) is called right if Ve > 0 IK e X(X)
Vp e M: p(X\K) <e M is tight if and only if M is relatively compact {2, p. 37).
M (X) is a convex subset of the locally convex linear topological space of signed,
countably additive set functions on the Borel sets of X with vector addition and scalar
multiplication defined in the natural way: (g + v)(E) = p(E) + v(E)and (¢p)E) =
cu(E). If p € A(X), then let suppp = {(x € X: p(B(x,d)))> 0 for every € > 0}.
Let p(x) denote the point measure at x, ie. p(xXE)=1ifx € E| and p(x)(E) =0
if x & E.
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Suppose W is a metric space. The function F: W — % (X) is said to be upper
hemicontinuous, lower hemicontinuous, and continuous at w, respectively, if for all ¢ > 0
there exists a § > 0 such that d,, (w, w) < § implies, respectively,

(1) B(F(w),dy) 2 F(w'),

(2) BF(w"), dy) 2 F(w), and

(3) d(F(w), F(w") <e.

Note that some authors use the prefix “semi” instead of “hemi”; our terminology is
consistent with [7]. ‘

F is continuous if and only if it is both upper and lower hemicontinuous. F is said
to have a closed graph at w if d,(w,, w)—> 0, x, € F(w,), and dy(x,,x) >0
implies that x € F(w). If F has a closed graph at w and F(w) is compact, then F is
upper hemicontinuous at w.

If 6 € #(W X X), then the marginal distribution of ¢ on W is denoted
oly.ie., 0|, (E) = o(E X X). dy,x((wy, x1), (Wy, X,)) = sup{dy(w, w,),
d y(x;, x,)}. If 6(E X F) is defined and countably additive for all E € & (W) and
F € #(X), then o can be extended uniquely to a measureon W X X. If f: 4 - W
and g: A > X, then f X g: A = W X X is defined by (f X g)a) = (f(a), g(a)).

The logical qualifier symbols V and 3 are used in proofs. Also, “s.t.” means “subject
to,” and “V,a € 4” means “for a-almost every a € 4.”

3. Games with named players. In this section we generalize the usual definition of
a strategic (or normal form) game by replacing the finite player set with a measure
space.

DEFINITIONS. Suppose (A4, &, «) is a probability space with &/ containing all
singletons of A and § is a nonempty compact metric space. If 8: 4 —» X{S) and =:
A — €(S X #(S)) are measurable, then (B, 7) is a game with named players on
(A, &, a, S). We will use 7(a, s, n) to denote w(a)(s, n). A feasible strategy profile of
the game (B, 7) is an s € S(4, &, a) satisfying V,a € 4: s(a) € B(a). A Nash
equilibrium of the game (B, w) is a feasible strategy profile s satisfying V,a € 4
Vr € B(a): n(a,s(a),aes™ ) > w(a,r,acs™! + a(a) p(r) — p(s(a))]). The set of
all feasible strategy profiles and Nash equilibria of the game (8, #) are denoted by
A(B, m) and ®(pB, 7), respectively.

REMARK 1. A “play” of the game can be interpreted as follows. Each player a € 4
chooses a strategy s(a) among her feasible strategies S(a) and then receives a payoff of
7(a, s(a), a°s~1). The payoff to a depends on the player’s own strategy s(a) directly
as well as through the aggregate distribution a ¢s~! so that players of zero measure can
still have an effect on their own payoff. Of course, for the payoff to be defined, s must
be measurable. The measurability of 8 and # and the Measurable Selection Theorem
[12] assure us that such a feasible strategy profile s exists. Nonetheless, the requirement
that players choose their strategies in a jointly measurable fashion can be thought of as
a restriction upon the independence of the individual players. Dubey and Shapley [4]
introduced strategic games in “coalitional strategic” form as one possible justification
for this weak form of coordination. This paper does not seek further justification than
the usefulness of the concept of an infinite player game. The definition of Nash
equilibrium has been extended in a natural fashion. Usually some sort of convexity or
nonatomic properties are invoked to insure the existence of Nash equilibria (see [15],
[13), [9]). Note that for players of zero measure, i.e., a(a) = 0, the inequality given can
be written m(a,s(a), acs™) > m(a, r, acs™ ).

REMARK 2. The usual finite player strategic game [N; K,,..., K,; fi,..., f,], where
N = {1,..., n}, the K, are compact metric spaces, and the f, € €(K; X - XK,),
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can be equivalently represented by a game with named players. Indeed, let (A, #, a)
be the uniform probability measure space on N: let S§ = N X (K, U --- UK,); let
B(i) = (i} X K;; and let 7(i) € €(S X A (S)) be an extension (guaranteed by Tietze’s
Theorem (17, Theorem 15.8]) of g(i)(s,n) =fx,...,x,) if 9=_>/n)pq, x;)
+ -+ +p(n, x,)] and s = (4, x,).

REMARK 3. A and & are correspondences from the space of games to the space of
all strategy profiles S(4, #, a); hence, it becomes possible to consider the continuity
properties of these correspondences once the two spaces are given suitable topologies.
Both spaces are function spaces and so there is no unique “natural” topology to
choose. Housman [9] considers a general class of topologies and the continuity
properties obtained.

REMARK 4. It is easy to further extend the definition of game by allowing players’
payoffs to be dependent on the entire feasible strategy profile s rather than its
distribution a s, This is considered by Housman [9] and Schmeidler [15]. Housman
considers various topologies on the space of feasible strategy profiles that are no
weaker than pointwise convergence; Schmeidler considers the L, weak topology and
(A, o, a) is assumed to be nonatomic. The restriction to payoff dependent on aos™!
is weaker than what one might initially guess (see Remark 2 and (13, Remark 1]);
however, the restriction has content. The reason for the restriction is so that compari-
sons can be made with a different definition of game to be given in the next section.
We can allow S to be a complete metric space with bounded metric rather than
compact; this is considered in Housman [9].

4. Games without named players. In a game with named players, a player is given
a name a € A but is characterized by her strategy set f(a), a payoff function m(a),
and a size (of influence over the other players) a(a). In this section we develop an
approach to strategic games in which the players are characterized by a strategy set,
payoff function, and size without assigning names to players. :

DEFINITION.  Suppose S is a compact metric space. Let 7 (S)=X(S) X €(S X
#(S)) X [0,1), and T(S) = {(K, f,0) € J(S)}. A game without named players on S
isa p € #(T(S)) satisfying (K, f, x) € supp p\ Zo(S): n(K, f, x)/x is a positive
integer. The space of games without named players on $ is denoted by 9(S).

A game without player names gives an accounting of the number (or measure) of
players of each possible “type.” A “type” is a (K, f, x) € J(8) where K is a strategy
set, f is a payoff function, and x is a size. If a type has a nonzero size, then there must
be a nonnegative integral number of players of that type in any particular game which
leads to the one restriction on p in the definition.

REMARK 5. All of the results in this paper can be extended to the case when S is a
complete metric space with a bounded metric. #(X) is redefined to be the space of
Borel probability measures with separable support (in the present case, J(S) is
separable so that all probability measures on I (S) have separable support), and
Varadarajan [16] should be consulted instead of Billingsley (2]. The statement of all
results would be the same except for Theorem 7 (see Remark 7).

REMARK 6. Unlike Mas-Colell [13), this formulation of game allows for players to
be of nonzero size and to have different strategy sets. The value of such a generaliza-
tion was discussed in the introduction. It should be noted that most nonatomic games
under the present definition have representations as games under Mas-Colell's defini-
tion. The two representations will have identical equilibria; however, infeasible strategy
profiles under the present definition will become feasible strategy profiles and result in
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different payoffs under Mas-Colell’s definition. Hence, the natural topological struc-
tures on spaces of games under the two definitions do not relate in an easily discernible
way. The present definition seems better suited for questions of equilibria correspon-
dence continuity in applications.

DEFINITIONS. A strategy profile on a compact metric space S isa 0 € A (I (S) X
S) satisfying (K, f; x, 5) € supp ¢ with x > 0: o(K, f, x, s)/x is a positive integer.
The space of all strategy profiles on § is denoted by S(S). A feasible strategy profile
for the game p is a strategy profile ¢ satisfying 6]y = p and V(K, f, x,s) € supp a:
s € K. The set of all feasible strategy profiles of the game p is denoted by A(p).
Hence, A is a correspondence from €(S) to £(S ). ' ’

A strategy profile gives an accounting of the number of players of each possible type
choosing each possible strategy. So, a strategy profile carries with it the definition of a
game in a marginal distribution. For a strategy profile to be feasible for a particular ) !
game, clearly the game defined by the strategy profile must be the game under ?
consideration. Also players are restricted to using strategies in their own strategy set. %

¢

Note that #(S) is closed. -

DEFINITION, The feasible strategy profile o is a Nash equilibrium for the game p if
V(K, f, x, s) € suppo Vr € K: f(s,0]s) > f(r,o|s + x[ p(r) = p(s))). The set of all
Nash equilibria of the game p is denoted by ®(u). Hence, ® is a correspondence from
€(S) to L(S).

We now consider the relationship between games with and without named players.
Suppose (B, 7) is a game with player names on (A, ,a,S)and s € A(B, 7). Itis
clear that p = a°o(B X 7 X a)~! is a game without player names on S having the
same distribution of player types as (8, ), and o = ao(B X7 X aX s)"le A(p). If 5
s € ®(B, 7), then o € (). Going from games without named players to games with
named players is not as clear-cut, because two different games with named players may
have identical player type distributions. Example 1 shows that there may be a feasible
strategy profile (or Nash equilibrium) in a game without player names that does not
correspond to any feasible strategy profile (or Nash equilibrium) in a game with player
names having the same distribution of player types. Nonetheless, the relationship is
shown to be very close by Theorem 1. Further, Example 2 shows that there is a perfect
representative of a game without named players by a game with named players. Similar
results for cores of cooperative games arising from market economies were first shown
by Hart, Hildenbrand and Kohlberg (7.

ExaMPLE 1. Let 4 = [—1/2,1/2), & the o-field of Lebesgue measurable subsets
of A, a the Lebesgue measure on (4, &), and S =R. Let B,(a) =[0,3/2 + al.
B,(a) = [0,1 + 2|a|}, and 7(a) be the zero function for all a € A. Clearly, ae (B, X =
X a)~! = ao(B, X m X @)~ = p. Consider s defined by s(a) = 1+ 2ja| if 0 < a.
and s(a) = 0 if a < 0. Clearly, s € A(B,, ), and s0 0 = ao(ByXxmXaxs) e
A(p). However, there is no r € A(f,, m) for which ao(B, X m X a X! =o. Simi-
lar remarks hold for Nash equilibria since ®(8,, 7) = A(B;, 7) fori=1,2.

THEOREM 1. Suppose (B, w) is a game with player names on (A, &, a,S) and
p=ao(BxmXa) ' If D(E) is the closure of {ac(BX7Xaxs)s€E]
then A(p) = D(A(B, m)) and ®(p) = D(®(B, 7). -

_ Proor. The remarks before the theorem show that B(A(B, 7)) € A(p) and
D(®(B, m)) € (B, 7).

Suppose 6 € A(p)and € > 0. Since S is compact, there exists a finite partition { S, |
of S for which diam(S,) < e for each n. Since o is nonnegative and finite, the S, can
be chosen so that if 6(F(S) X {s}) > 0, then there is an n for which S, = {s}. Lat
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A, = {ae A\Uy 4, (B(a),7(a), a(a)) € supp o(- X §,)}. Since B and 7 are
measurable, 4, €. Let y: 4 — %(S) be defined by y(a) = B(a) N E((S,,) if
a € A,. Clearly, y is nonempty-valued and lower measurable. So, the Measurable
Selection Theorem [12] implies that there exists a measurable function s: 4 —» S
satisfying s(a) € B(a) N B(S,) if a € A,. Hence, s € A(B, 7). Let T =ae(B X7 X
a X s)~'. We now show that p(o, 1) < 2¢. Suppose E € F(JI(S)) and
ReF(S). If §={(s€8: s€8§, and §, NR+ T}, then o(E X R) <
o(E X §") < 7(E X B(S")) < 7(E X B,(R)) < 7(B,(E X R)) + ¢. If =(ses:
s€ S, and B(S,)NR=#+ @}, then 7(EXR)< o(E X §") < 6(E X B,(R)) <
o(B, (E X R)) + €. Therefore, 0 € D(A(B, ).

Suppose ¢ € ®(p) and € > 0. Let y: suppp — X' (S) be defined by v(K, f, x) = (s
€S: (K, f, x,5) €suppa). Since suppo is a closed set, y has a closed
graph and so is measurable. So, B’ = v °( B X m X a) is measurable, and A(B’,7) =
®(B’, 7) € ®(B, 7). Let o' € F(S) be defined by ¢'(E) = o({(K, f, x, s):
(y(K, f,x), f, x,s) € E}) and note that o'| 7, = ao(B X mx a)~l. By the first
paragraph, there exists a s € A(B’, 7) satisfying p(a°(B’ X 7 X a X s)"Lo) <e
But then p(ac(B X7 X aX s)"!,0) <e and s € (B, 7). Therefore, o €
D(®(B, 7)).

EXAMPLE 2. Suppose p is a game without named players on S. Let A =9(S) X
[0,1], « be the Borel subsets of 4, B be defined by B(K, f, x,z) = K, and 7 be
" defined by 7(K, f, x, z) = f. If I € #([0,1)) and E € #(J4(S)). thenlet a(E X I) =
p(E)N(I) where A is Lebesgue measure. If (K, f, x) € suppp \Zo(S), then let
(K, f, X)) X I) = w(K, f, ¥)I{ j: j/m € I}|/m] where m = u(K, f,x)/x.1{ 1 &
(supp p) U Jo(S), then let a({t} X 1) = 0. Clearly, (A4, &, a) is a probability space
and (B, ) is a game on (4, ¥, S) for which p=ac(BXmxa) . It is
straightforward (using the separability of A) to show that ¢ € A(p) implies that
there exists s € A(B,7) for which o6 =a°(fB X7 X aX s)~!. Thus, A(p)=
{ac(BX 7 X aXs) s € A(B,7)} and @(p) = (ae(BXTXaxs) i s€
(B, m)).

5. Existence and continuity results. In this section we consider the nonemptiness
and continuity of the feasible strategy profile and Nash equilibria correspondences.
Any reasonable model for a strategic form game should have a nonempty-valued and
continuous feasible strategy profile correspondence. That this is the case for games
without named players is shown by Theorems 2 and 3.

THEOREM 2. A(p) is nonempty and compact.

ProOF. Define H: J(S) —» X (S) by H(K, f, x) = K. Clearly, H is nonempty-
valued and measurable. By the Measurable Selection Theorem [12], there exists a
measurable function h: Z(S) — S satisfying h(K, f, x) € K. Now define o € Z(S)
by o(V) = p({t €T(S): (1, h(1)) € V')). Clearly, o € A(p).

Fix ¢ > 0 because {p} is a compact set, it is also tight. So, there exists a
compact T C J(S) satisfying p(T) > p(7(S)) — ¢ Now R={s€S: s€K,
(K, f,x) € T} is compact, and ¢ € A(p) implies that o(T X R) = o|s(T) = w(T)
> u(J(S)) — € =0(T(S) X §) — e Hence, A(p) is tight and therefore relatively
compact. Finally, A(p) is clearly closed.

THEOREM 3. A is continuous.

PROOF. Since A is compact-valued, to show upper hemicontinuity it is sufficient to
show that A has a closed graph. Suppose p,, p € 9(S), g, = I 0, € A(p,). and
o, > 0. We need to show that o € A(p). First, ¢ € £(S) since F(S) is closed.
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Theorem 3.2 of Billingsley [2] implies that o]z, = p since o,)gs) = p,. If
(K, f, x,s) € suppa, then there exist (K, f,, x,, 5,) € suppo, that converge to
(K, f, x, s). Since s, € K,,, it follows that s € K. Thus, 6 € A(p).

Suppose p € (S), 0 € A(p), and € > 0. Since A is compact-valued, to show lower
hemicontinuity, it is sufficient to show that 386 > 0 V» € 4(S) s.t. p(p, ») < 83r €
A(») st. p(0,7) < 2¢. Because S is compact, there exists a partition {S15:::58,}
of § satisfying diam(S,) <€ for k=1,...,n Let o, be defined by
0, (EXR)=0(EX(RNS,))/a(T(S) X S,) for E€ F(I(S)) and R € #(S).
Let p, = 0|45, Define a scalar multiplication © by (cOuXE) = cu({(K, f, x):
(K, f, cx) € E}). Clearly, O is continuous, and if p € 9(S), then cOp satisfies all the
properties of being a game (in particular, the nonnegative integer property) except that
(cOp)T(S)) = c instead of 1. By the continuity of the addition and scalar multipli-
cation operators, 38 > 0 Vv € 9(S) s.t. d(p,») < 83v,..., 5, € 9(S), cyy..., G, >
0: »=0c,0p + - +¢,0v,, p(p,v) <€ and suppw, C B(suppp,) for k =
1,...,n Let (B,7) be a game with named players (4, «, a) having the same
distribution as », (such a game exists by Example 2). Let H: 4 — X'(S) be defined by
H(a) = B(a) N B(Sk). It is clear that H is nonempty-valued and lower measurable.
Hence, by the Measurable Selection Theorem [12), 3s € A(B, 7) ¥,a € 4: d(s(a), S,)
<e Let 7 =ao(BX7XaXxs)!, and consider 7=cOr + -+ +
¢,Ot,, where (cOT)E) = er({(K, f, x, 5): (K, f,cx,5) € E}). Clearly, 1€ A(»).
Finally, we show that p(o,7) < 2¢. Suppose E € #(J(S)) and R EF(S) If
K={k: S "R+ @}, then

6(EXR)< Y o(EXS)= Y o(EXS)< ¥ ¢ [n(EXS)+¢
kek kekK kek

< ). 7(EXB/(S,)) +e<7(E X By(R)) + €< (B, (EXR)) + 2e.
kek

If K= {k: B(S) "R # @}, then

(EXR)= } cm(EXR)< Y ci[o(EXS,) + €] <o(By(E X R)) + 2e.
kek kek

Even for finite player games, Nash equilibria do not exist in general. A convexity
condition is often used to insure existence of Nash equilibria for finite player games.
Theorem 4 generalizes results given by Schmeidler [15] and Mas-Colell [13]. In
Theorem 5 ‘we easily obtain the upper hemicontinuity of the Nash equilibrium
correspondence.

DEFINITION. A game p on a compact subset S of a locally convex linear topologi-
cal space is convex if Y(K, f, x) € suppp V§ € #(S): K is convex and g(r) =
f(r,(1 = x)§ + xp(r)) is quasiconcave in r.

THEOREM 4. If p is convex, then ®(p) is nonempty.

PROOF. This follows immediately from the Nash equilibrium existence theorem for
games with named players found in Housman [9] and Theorem 1.

THEOREM 5. & is compact-valued and upper hemicontinuous.

PrOOF. Since ®(p) € A(p) and A is compact-valued, we need only show that &
has a closed graph. Suppose p,, p € 9(S), 0, > 0, 0, € ®(p,), and o, > 6. By
Theorem 3, o € A(p) and Y(K, f,x,5s) €Esuppo Vre K, XK, f, x,.5,) €
suppo, 3r, € K,: (K, f,. x,n5,) > (K, f,x,s) and r, > r. Because o, € ®(p,),
it follows that f (s,,0,ls) > f,(r, 0,5 + x,[p(r,) = p(s,)]). Hence, by the var-
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ious convergence and continuity properties of the entities involved, (s, olg) = f(r, 0l
+ x[ p(r) = p(s)D.

While the Nash equilibrium correspondence is upper hemicontinuous, it is easy to
provide counterexamples to lower hemicontinuity. This is also true for finite player

games in the usual formulation. Nonetheless, there is a slightly weaker lower hemi-
continuity type property that does hold for finite player games with named players.

DErFINITIONS.  The feasible strategy profile o is a y-Nash equilibrium for the game p
if V(K,f, x,s)€suppa Vr€K: f(s,0ls) = f(r,als + x[p(r) = p(s)) — ¥- The
set of all y-Nash equilibria of the game p is denoted by ®, (p). The Nash equilibrium
correspondence @ is nearly lower hemicontinuous on G at p if Vy,e>036>0
Vy € G s.t. d(p, v) < 8: ®(p) € B(D,(»)). .

Housman [9] has shown that the Nash equilibrium correspondence for finite player
games with named players is nearly lower hemicontinuous. This result does not hold
for games without named players because of the possibility of “contaminating™ any
game with a very small game of matching pennies with pure strategies (see Theorem 6).

Nonetheless, the Nash equilibrium correspondence is nearly lower semicontinuous on a
restricted class of games (see Theorem 7).

THEOREM 6. ® is not nearly lower hemicontinuous on (9) at any game p for which
d(p) + 2.

ProoF. Let 4 = {1,2}, a(l) = a(2) =1/2, and § = [-1,1]. Let (B, 7) be de-
fined by B(a) = {—1,1}, n(1,s) = —s(1)s(2), and 7(2,s) = s(1)s(2). Let v =ace
(B X mXa) L Clearly ®(v)= @ for y <2 Let p& #(S) and consider p, =
(1 — ¢) Op + cOv where O is as defined in the proof of Theorem 3. Again ® (1) = &
for-y<2andc>0,butpc—+pasc—>0.

DerINITION. The game p is said to be equicontinuous if {f: (K, f,x) € suppp}is
a compact subset of €(S X A (S)).

THEOREM 7. @ is nearly lower hemicontinuous on the space of convex games at an
equicontinuous game.

PROOF. Suppose p is an equicontinuous game, ¢ € ®(p), and v, € > 0. Since P(p)
is compact, to show near lower hemicontinuity, it is sufficient to show that >0V
convex games v s.t. p(p,¥) < 8 Ire o (v): plo,7) <€ Equicontinuity and the
compactness of S and #(S) imply uniform equicontinuity: 3¢’ € (0, min{ e, v/8})
V(K, f,x) € suppp Vr,s €S st d(r,s) <2 VEn€EM(S) st p(&,m) < 4de”
| f(r,&) = f(s,m)|< y/4. The continuity of A implies that 35 € (0,¢') Vv € ¥(S)
s.t. p(p,v) <8 3T € A(p): p(o,7) < €. Suppose v is a convex game such that
p(p, v) < 8. By the above, 37 € A(n): p(o,7) < €. If 7 were a y-Nash equilibrium,
we would be done; however, there can be a set of players who are not playing
“y-optimal” strategies. We change these players’ strategies. Let W = B_.(supp o),
rw(E) =T(EN W), and ¢ = 1 — 7, (W). Consider the game v’ defined by v'(E) =
»({(K, f, x): (K, g ¢ 'x) € E where g(s, £) = f(s, ¢t + tyls))). In
words, »' is the game played by the players of » whose strategy choice (as a part of 7')
was not in W when the players with strategy choices in W do not change their strat-
egy choice. Because » is a convex game, ' is a convex game. So, Theorem 4 im-
plies that 3r’ € ®(»'). Let 7 =1, + cOr" where © is the scalar multiplication
defined in the proof of Theorem 3. Clearly, 7 € A(») and p(o, 7) < 2¢’. Suppose
(L, g y,v) €supprand u€ L.If (L, g y,0) & SUPP Ty then g(u, 7|s) > g(v, 7ls
+ y[ p(u) — p(v))) because 7" € ®(v’). Suppose now that (L, g, y, v) € supp 7y and
u € L. Then 3(K, f, x,s) € suppodre€ K: d(g, [) < 2¢, d(y, x) <2¢, d(v,s) <
2¢'. and d(u.r) < 2¢. Also, note that if £ =a|s + x[p(r) — p(s)) and n = 7{g +
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yIp(u) — p(v)], then p(£, ) < 4¢’. Hence,

gk, 7ls) = 2(0.m) > —|g(u, 7l5) = f(u, 7ls) |
= f(u,7ls) = (s, 0l5)]
+[£(s,0l5) = £(r, £)]
=1/(r, &) = f(0, )|

=1/(v, 1) = g(v, )|
> -2 -y/4+0—-v/4-2¢ > .

Therefore, 7 € . (v).

REMARK 7. If S is a complete metric space with a bounded metric, then Theorem 7
must be modified to consider a uniformly equicontinuous game rather than just an
equicontinuous game. Example 6 of Housman [9] shows that the theorem will not be
true, in general, if the equicontinuity assumption is relaxed. '
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