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Fair Allocation Methods for Coalition Games

David Housman

ABSTRACT. A coalition game is a mathematical model of situations in which
players can make enforceable agreements to cooperate. For each set of players,
there is a numerical gain that can be distributed should the players agree to
cooperate. This paper describes some interesting classes of coalition games,
methods for allocating the gains among the players, and properties that for-
malize intuitive notions of fairness. We determine on which class of games each
method satisfies each property. Some methods are characterized via properties.

Game theory uses mathematical models to explore situations in which two or
more decision makers, the players, have an effect on outcomes that each player may
value differently. A coalition game is an austere model of situations in which players
can make enforceable agreements to cooperate. If some players agree to cooperate,
they must know, at minimum, what can be accomplished by their cooperation. A
coalition game uses numbers to describe what all sets of players can accomplish
through cooperation. These numbers can be thought of as money, utility, value, or
gain that can be distributed among the cooperating players.

Given a coalition game, we can ask what will happen? Presumably, players
will negotiate a distribution of the obtainable gains that is acceptable to each of
the cooperating players. We can also ask what should happen? For example, an
external arbitrator may be asked to impose a distribution of the obtainable gains.
Fairness will be part of the answer to either question. An arbitrator is supposed to
impose a fair distribution, and in a negotiation, a player is unlikely to agree to a
distribution that does not seem fair.

This article will describe coalition games, methods to distribute obtainable
gains, and method properties that formalize intuitive notions of fairness. We will
see which methods satisfy which properties and then characterize some methods
with properties. One goal is to provide an introduction to, not a complete survey
of, the literature. Some of the results are new, but most of the results are in the
literature. A second goal is to suggest directions for future research that could
be accomplished by undergraduate or graduate students of mathematics. Good
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sources to obtain further pointers into the appropriate literature are [1, chapters
13, 17, and 18], [2, chapters 34 and 36], [3, chapters 53-56], [8], [21], [22, chapter
7], (28, chapter 5], [25], [32], and [37].

Section 1 defines coalition game and allocation, describes a few examples and
classes of coalition games, and describes a few fairness properties for allocations.
Section 2 describes several fairness properties for allocation methods and illustrates
these properties with a very simple allocation method. Sections 3, 4, and 5 describe
many reasonable allocation methods and determine which properties each method
satisfies. Section 6 states a mutual incompatibility of three properties and three
characterizations of allocation methods via properties. Section 7 suggests directions
for future research.

1. Coalition Games

This section defines coalition game and allocation, describes a few examples
and classes of coalition games (the containment relationships among these are sum-
marized in Figure 1), and describes a few fairness properties for allocations.

DErFNITION 1.1 (Coalition Game). A coalition game consists of a finite set N
and a real-valued function w from the subsets of N that satisfies w(@) = 0. An
element ¢ in N is called a player, and a nonempty subset S of IV is called a coalition.

The real number w(S) is interpreted as the worth, value, utility, or gain of the
coalition S, that is, the amount available to distribute among the players in S if
that coalition forms.

ExAMPLE 1.2 (Savings). The government has mandated improvements in the
sewage treatment facilities in the cities of Avon, Barport, Claron, and Delmont.
Each city could work separately, but $140 million would be saved by all four working
together. If one of the cities was unwilling to cooperate, some triples of cities
could also save money: without Delmont’s cooperation, Avon, Barport, and Claron
could save $108 million; without Claron’s cooperation, Avon, Barport; and Delmont
could save $96 million; without Belmont’s cooperation, Avon, Claron, and Delmont
could save $84 million; and without Claron’s or Delmont’s cooperation, Avon and
Barport could save $24 million. No other subset of the cities could save money over
completing the projects individually. In particular, Barport, Claron, and Delmont
cannot save any money without the assistance of Avon. This situation can be
modeled with a coalition game involving the players N = {4, B, C, D}, where we
represent each city with the first letter of its name, and the function w defined
by w(N) = 140, w({4, B,C}) = 108, w({4,B,D}) = 96, w({4,C,D}) = 84,
w({4, B}) = 24, and w(S) = 0 for all other coalitions S. In a standard abuse
of notation, we usually remove the set brackets and commas in examples. For
example, instead of w({4, C, D}) = 84, we write w(ACD) = 84.

REMARK 1.3. The set of games w with a fixed player set N can be viewed
as vector in a 2V — 1 dimensional convex subset of R2", where 2% is the set of
subsets of N. So, it makes mathematical sense to add games using vector addition
and multiply games by scalars.

Given a coalition game, our goal is to determine a fair distribution of the
possible gains. Qur presumption will be that all players either choose or are forced
(say by government decree) to cooperate.
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DEFINITION 1.4 (Allocation). Given a coalition game (N, w), an allocation is
a real-valued vector = indexed by the players that satisfies the efficiency condition
> ienTi = w(N). The number z; is called player i’s payoff.

For the savings coalition game, (20, 30,40, 50) and (100, 25, 25, —10) are alloca-
tions, although neither seems the least bit fair.

EXERCISE 1. This is a good place for the reader to stop for a few minutes and
do ome or both of the following. First, find three other people and play the savings
coalition game, that is, have each person be a representative for one of the four
cities and then negotiate to an acceptable allocation. Second, act as an arbitrator
and choose what you think is the most fair allocation.

In this paper, we will typically consider games in which there is no disincentive
for players to cooperate with other players.

DEFINITION 1.5 (Superadditive Game). A coalition game (N, w) is superad-
ditive if w(S) + w(T) < w(SUT) for all coalitions S and T satisfying SN T =
<.

The savings game is superadditive. Indeed, if S N1 = @, then at most one of
S and T contains player A, and so w(S) = 0 or w(T) = 0. Since worths are non-
decreasing in the cardinality of the coalition, w(S) + w(T") = max{w(S), w(T)} <
w(SUT).

Player D would object to the fairness of (100,25, 25, —10) because player D
could obtain a payoff of 0 without cooperating with anyone else. We posit that
players will agree to an allocation only if each player receives at least as much as
that player could receive on its own.

DEFINITION 1.6 (Player-Rational Allocation). Suppose (N,w) is a coalition
game. The allocation z is player-rational if ; > w({i}) for all s € N.

The savings game allocation (20, 30, 40, 50) is player-rational, but players A, B,
and C' may object because they only receive 20+430+40 = 90 but as a coalition they
could obtain w(ABC) = 108. A coalition-rational allocation avoids such objections.

DerINITION 1.7 (Coalition-Rational Allocation). Suppose (N, w) is a coalition
game. The allocation z is coalition-rational if 3, cz; > w(S) for all S C N.

Clearly, a coalition-rational allocation is player-rational. The savings game al-
locations (140, 0,0,0) and (8,56, 44, 32) are coalition-rational, but few would argue
either is fair. Hence, more intuitions about fairness need to be formalized. At the
same time, insisting on coalition-rational allocations may be too restrictive because
some games have no coalition-rational allocation.

EXAMPLE 1.8 (Simple Majority). There are at least three players and
w(S) = { 1, if |S| > |N|/2

0, otherwise
This game has no coalition-rational allocations. Indeed, if z were a coalition-
rational allocation, then 7, M T2 L forall j € N. Summing these inequalities,

we obtain (n—1) ) ;c v #; 2 n, contradicting the efficiency condition 3, z; = 1.

DEFINITION 1.9 (Balanced Game). A coalition game (N, w) is balanced if there
are coalition-rational allocations.
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Since no coalition-rational allocation exists for a simple majority game, we
cannot expect a fair allocation to be coalition-rational. In a negotiation, perhaps
a coalition of just over half of the players will form and evenly split the gain while
the other players are left with payoffs of zero. In an arbitration, there is no fair
way to distinguish among the players, and so the same amount should be given to
each player. We now formalize this intuition.

DermITION 1.10 (Unbiased Allocation). Suppose (N,w) is a coalition game.
Players i and j are indistinguishable if w(SU{i}) = w(SU{s}) for all S C N\ {37, j}.
The allocation z is unbiased if x; = x; for all indistinguishable players ¢ and j.

The unique unbiased allocation for a simple majority game gives a payoff of
1/|N| to each player. However, the unbiased property does not directly eliminate
any allocations to the savings game. So, instead of only considering players that
are indistinguishable, we strengthen the property by considering players that are
clearly distinguishable. too.

DEFINITION 1.11 (Strongly Unbiased Allocation). Suppose (N, w) is a coalition
game. Player ¢ is called weaker than player j if w(S U {i}) < w(SU{j}) for all
S C N\{4,7}. The allocation x is strongly unbiased if x; < x; whenever player 4 is
weaker than player j.

In the savings game, player D is weaker than player C is weaker than player
B is weaker than player A. So, the allocation (50, 35, 35, 20) is strongly unbiased,
but the allocation (8, 56,44, 32) is not strongly unbiased.

The superadditivity criterion can be strengthened to obtain games with very
strong incentives for cooperation.

DEFINITION 1.12 (Convex Game). A coalition game (N, w) is convez if w(S)+
w(T) <w(SUT)+w(SNT) for all S, T C N.

The simple majority game is a game that has no coalition-rational allocation.
On the other hand, convex games have “large” sets of coalition-rational allocations
[30]. Games that are not convex may have coalition-rational allocations. For
example, the savings game has the coalition-rational allocation (140, 0,0, 0), but it
is not convex because w(ABC) + w(ABD) £ w(ABCD) + w(AB).

DEFINITION 1.13 (Simple Game). A coalition game (N, w) is simple if w(N) =
1 and w(S) € {0,1} for all S C N. If w(S) = 1, then S is called winning, and if
w(S) = 0, then § is called losing.

Simple games model voting systems, and a fair allocation is interpreted as the
voting powers of the voters. The simple majority games are examples of simple
games. Here is a more complex example of a simple game.

EXAMPLE 1.14 (Federal Law). The players are the 435 Representatives, 100
Senators, and President of the United States of America. We think of the Vice
President, who can break ties among Senators, as a proxy for the President. In
order for a proposal to become federal law, it must be approved by the President
and simple majorities of the Representatives and Senators, or without approval of
the President, it must be approved by two-thirds majorities of the Representatives
and Senators. Hence, a coalition is winning if and only if it contains (1) at least 218
Representatives, at least 50 Senators, and the President; or (2) at least 290 of the
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Representatives and at least 67 of the Senators. Intuitively, the President has more
voting power than a Senator who has more voting power than a Representative.

A superadditive simple game corresponds to voting situations which satisfy the
following natural conditions: (1) supersets of winning coalitions are winning, and
(2) the complement of a winning coalition must be losing. Convex simple games
are the unanimity games.

DEFINITION 1.15 (Unanimity Game). Suppose T C N. The unanimity game
on T is the game (N, u”) where

L, if eSS
T . 3 =
Pl { 0, otherwise

In words, a coalition is winning if and only if the coalition contains T'. If T" = {i},
then we call player i a dictator.

In the unanimity game (N,u?), two players in T are indistinguishable, and
two players in N\T' are indistinguishable. Hence, an unbiased allocation gives the
same payoff to each player in 7" and gives the same payoff to each player in N\T.
Since the players in NV\T neither contribute nor detract from gains obtained by any
coalition, it seems only fair that players in N\T receive nothing and pay nothing.

DEFINITION 1.16 (Subsidy-Free Allocation). Suppose (N, w) is a coalition game.
Player i is called a dummy if w(S) = w(S\{i}) + w({i}) for all coalitions S con-
taining 7. Note that we are using the convention w(@) = 0. The allocation z is
subsidy-free if z; = 0 for all dummy players .

The unique unbiased and subsidy-free allocation for the unanimity game (N, u7)
is @ satisfying «; = 1/|7T'| if ¢ € T’ and z; = 0 otherwise. The same allocation is the
unique unbiased and coalition-rational allocation.

Besides having uniquely determined fair allocations, the unanimity games on
n-players also form a basis for the space of games on n-players. Indeed, the number
of unanimity games, 2" —1, is the same as the dimension of the space of games, and
the space of games is spanned by the unanimity games: w = > .y druT where
dr =Y. geqr(=1)T1=18hy(S) [29]. The game w is convex if dp > 0 for all coalitions
T satisfying |T| > 2

The subsidy-free property is also useful in selecting the most reasonable allo-
cation in another class of games.

DEeFINITION 1.17 (Additive Game). If there exists a real-valued vector z € RY
for which w(S) = ). g% for all § C N, then the coalition game (N, w) is additive.

The unique unbiased and subsidy-free allocation for the additive game (N, w)
is x satisfying z; = w({i}). The same allocation is the unique player-rational
allocation.

It is sometimes useful to compare allocations in different, but related, games.

ExAMPLE 1.18 (Veto Power). Suppose N = {1,2,...,n}, k€ N,and 2 < r <
n — 1. Define

; 1,ifke Sand [S]|>7r
k7 - ) =
(@)= { 0, otherwise
If z is coalition-rational, then for each player i # k, 0 < z; =1 — ZjeN\{i} x; <0,
which implies 2; = 0, and so z; = 1. Thus, the kth unit vector x* is the unique
coalition-rational allocation.
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The allocation x* = (1,0,...,0) is the unique coalition-rational allocation in
both the dictator game u{'} and the veto power games v*". In the dictator game
ull}, player 1 can obtain 1 without cooperating with the other players. In the veto
power games v17, player 1 needs to cooperate with at least 7 — 1 other players to
obtain 1. Restricting ourselves to coalition-rational allocations will not reflect the
apparent differences in power player 1 has in these games,

ExaMPLE 1.19 (Cost Overrun). The savings game is based on cost estimates
before the improvements have been started. Suppose that the four cities decide to
cooperate and a $20 million cost overrun occurs. Although a cost overrun might
have occurred had a different coalition decided to cooperate, for simplicity, we will
assume that is not the case. This situation can be modeled with the coalition game
(N,w) where N = {A,B,C, D}, w(N) = 120, w(ABC) = 108, w(ABD) = 96,
w{ACD) = 84, w(AB) = 24, and w(S) = 0 otherwise.

It seems reasonable that whatever the fair allocation is for the savings game,
each player should receive less in the cost overrun game.

DEFINITION 1.20 (Zero-Normalized Game). The coalition game (N, w) is zero-
normalized if w({i}) =0 for alls € N.

Except for the unanimity games u{}, all of our examples have been zero-
normalized. Another non-zero-normalized game could have been defined had we
described the savings game differently. Presumably for each coalition S, there is a
cost ¢(S) for the cities in S to jointly improve their sewage treatment facilities. The
savings game would have been obtained by computing w(S) = > ;. s c({1}) — ¢(5).
It would have been reasonable to instead define the game v(.S) = —¢(S). This later
game would not be zero-normalized. Nonetheless, it would seem that the allocation
to player ¢ in w should be ¢({i}) plus the allocation to player i in v.

As suggested by our comparison of the savings and cost overrun games and our
comparison of two ways of representing joint costs as a coalition game, a desire for
consistent treatment of players across different games motivates the definition of
allocation methods, the topic of the next section.

In this section, we have described two economics examples (savings and cost
overrun), three political science examples (federal law, simple majority, and veto
power), and seven classes of games (zero-normalized, superadditive, balanced, con-
vex, simple, unanimity, and additive). The containment relationship among these
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is illustrated in Figure 1.

coalition
games

Zero
normalized

superadditive

balanced convex

& federal law

esavings

esimple
majority

®COst overrun

unanimity

¢ additive

Figure 1. Containment relationships among the classes and examples of
coalition games.

‘There are many other situations that can be modeled as coalition games. Lucas
[18] describes several voting bodies including the United Nations Security Council,
the Israeli Knesset, the United States Electoral College, and New York State county
boards. Lucas and Billera [19] describe several economic games including airport
landing fees, WATS telephone lines, waterway pollution abatement costs, and the
sharing of the cost of a communication satellite. Moulin [22] describes coalition
game models for bilateral assignment markets, marriage markets, output-sharing of
production, exchange economies, and fair division with money. Young [36] describes
a cost allocation problem among six municipalities in Sweden and airport landing
fees. Moulin [23] models mail distribution and access to a network as coalition
games. Driessen [8] models water resource development in Japan and bankruptcy
as coalition games. A primary focus of Taylor and Zwicker [32] is the relationship
between weighted voting games and simple games.

2. Allocation Methods and Properties

An allocation can seem fair if it is selected by a method whose description
seems fair.

DerFmITION 2.1 (Allocation Method). An allocation method or value is a func-
tion from coalition games to allocations.

Here is a simple example of an allocation method.

DEFINITION 2.2 (Egalitarian Method). The egalitarian method gives player i
her individual gain, w({i}), and an equal share of any possible additional gain to
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be had by all players cooperating, w (N) — 3,y w({j}). An explicit formula is

&V, w) = w({i}) + ﬁ w V)~ 3 w({i})

JEN

The egalitarian method selects (35,35,35,35) for the savings game and (30,
30, 30, 30) for the cost overrun game; neither allocation is coalition-rational (coali-
tion ABC receives less than 108 in both allocations). The game (N, w) where
N = {1,2,3,4} and w = 3u!? 4 u!3 is convex, but £(N,w) = (1,1,1,1) is neither
coalition-rational (£1(N,w) + & (N, w) < 3 = w(12)) nor subsidy-free (player 4 is
a dummy but does not receive w(4) = 0). For simple games without a dictator
(which include the simple majority, veto power, and federal law games), the egali-
tarian method selects (1/|NJ,...,1/|N|), which is neither subsidy-free nor coalition-
rational if w(S) =1 for some S # N.

Although it often does not select coalition-rational nor subsidy-free allocations,
the egalitarian method selects player-rational allocations at superadditive games,
and always selects strongly unbiased allocations. Indeed, w (N) > > .y w({j})
for superadditive games implies that & (N,w) > w({i}), and if player ¢ is weaker
than player 7, w({i}) < w({s}) implies that &(N,w) < &(N,w).

It is not enough to define a method whose description seems fair. The method
should satisfy properties that formalize our notions of fairness. The fairness prop-
erties described in the previous section for allocations can be turned into fairness
properties for methods.

DEFINITION 2.3 (Unbiased, Strongly Unbiased, Subsidy-Free, Player-Rational,
and Coalition-Rational Properties). An allocation method « is unbiased, strongly
unbiased, subsidy-free, player-rational, or coalition-rational on a set I' of coalition
games if a(N,w) is unbiased, strongly unbiased, subsidy-free, player-rational, or
coalition-rational, respectively, for all (N, w) € T".

The egalitarian method is player-rational on superadditive games, and unbiased
and strongly unbiased on all games. The egalitarian method is neither subsidy-free
nor coalition-rational on superadditive, balanced, convex, or simple games. We
would like to describe allocation methods that satisfy fairness properties on as
large of a class of games as possible.

The goal of the following sections is to describe several allocation methods,
apply them to the previously described examples, and explore their properties. In
this section, we describe the fairness properties we will consider.

If we give the players different names, the economic situation is left unchanged
and so the allocation should be unchanged except for the renaming. Such an allo-
cation method is anonymous, and an anonymous method is unbiased.

DEFINITION 2.4 (Anonymous Property). If (N,w) is a game, € RY, and
m: N — M is a bijection, then the game (7(N), mw) is defined by (mw)(n(S)) =
w(S) and the vector 7(x) is defined by 7(z)r;) = x;. An allocation method o is
anonymous on a set I' of coalition games if a(w(N), rw) = m(a(N,w)) whenever
(N,w) e, (w(N),mw) €', and 7 : N — M is a bijection.

A change in units (e.g., euros instead of dollars) in the data should result in
only a change of units in the allocations.
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DEFINITION 2.5 (Proportionate Property). An allocation method « is propor-
tionate on a set T" of coalition games if a(N, Aw) = Aa(N,w) for all (N, \w) € T,
(N,w) €T, and A > 0.

If a game is changed by adding 1 to every coalition containing player 7, then
the allocation should be unchanged except for giving an additional 1 to player 4.

DEFINITION 2.6 (Player-Separable Property). An allocation method « is player-
separable on a set T' of coalition games if o; (N, w + v) = oy (N, w) + v({i}) for all
(N,w+v) el (N,w) €T, additive games (N,v), and s € N.

The egalitarian method is clearly anonymous, proportionate, and player-separ-
able.

We can now present our first allocation method characterization theorem. No-
tice that the characterization holds on four different classes of games. While we
want allocation methods that will satisfy fairness properties on as large of a class
of games as possible, when we are characterizing allocation methods, the smaller
the class of games, the stronger the result.

THEOREM 2.7. If « is unbiased and player-separable on (all, superadditive,
balanced, or convez) 2-player games, then « is the egalitarian method on (all, su-
peradditive, balanced, or convez) 2-player games.

PRrROOF. Suppose (AB,u) is a 2-player game. Define (AB,w) by w(AB
w(AB) — u(A) — uw(B) and w(A) = w(B) = 0. If u is superadditive, w(AB)

and so w is convex. Since « is unbiased, as(AB,w) = ap(AB,w) = %w(AB). et
(AB,v) be the additive game defined by v(AB) = u(A) + u(B), v(A4) = u(A4), and
v(B) = u(B). Since v = w+v and « is player-separable, a;(AB, u) = as(AB, w) -+
v(i) = (u(AB) — u(A) — w(B)) + u(i) = &(AB,u) for i = A, B. O

In comparing the savings and cost overrun games, we suggested that each player
should be allocated at least as much in the savings game as in the cost overrun game.
This notion is captured by the following property:

DEFINITION 2.8 (Aggregate-Monotone Property). An allocation method « is
aggregate-monotone on a set I' of coalition games if o;(N,v) < o;(N,w) for all
(N,v) €T, (N,w) €T, and ¢ € N satislying v(N) < w(N) and v(S) = w(S) for all
S C N but §#N.

In addition to player payoffs increasing with increasing w(N), we may wish to
require the payoffs to players in any coalition S to increase with increasing w(S).
This notion is captured by the following property:

DEFINITION 2.9 (Coalition-Monotone Property). An allocation method « is
coalition-monotone on a set I' of coalition games if o;(N,v) < o;(N,w) for all
(N,v) €', (N,w) €T, and ¢ € N satisfying v(S) < w(S) for all S C N and v(S) =
w(S) for all S € N\{i}.

Clearly, a coalition-monotone method is aggregate-monotone. The egalitarian
method is coalition-monotone. Indeed, 98&;(N,w)/0w(S) > 0 for all coalitions S
containing i.

Felsenthal and Machover [11] argue that measuring voting power in superad-
ditive simple games should satisfy their transfer property, which is a strengthening
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of the coalition-monotone property. Allocation methods that are not coalition-
monotone are subject to serious paradoxes when used as measures of a priori rela-
tive voting power.

This completes our introduction to some fairness properties for allocation meth-
ods and our analysis of the egalitarian method. The next three sections describe
and analyze many allocation methods. A table summarizing our analysis can be
found in section 6. The reader may find it helpful to refer to that table now for the
egalitarian method and then while reading the following sections.

3. Weighted Contribution Methods

The egalitarian method is almost never subsidy-free. To define a subsidy-free
allocation method, we need to give a payoff of w({i}) to a player ¢ whenever w(S) =
w(S\{i})+w({i}) for all coalitions S that contain i. This suggests that after assign-
ing each player their individual gain, we split any additional gains proportional to
quantities involving w(S) —w(S\{:}) —w({i}), which can be interpreted as the gain
player i brings to coalition S in addition to what player 7 can gain as an individual.

DerFINITION 3.1 (Marginal and Synergy Contribution). Suppose (N, w) is a
game. Player i’s individual gain is w({i}). Player i’s marginal contribution to the
coalition S is the quantity w(S) — w(S\{:}). Player i’s synergy contribution to the
coalition S is the quantity w(S) — w(S\{¢}) — w({i}).

DEFINITION 3.2 (Synergy, Banzhaf, and Shapley Values). Suppose a =

(ag,as,...,a,) is a non-zero vector of nonnegative real numbers. Player i's a-
weighted sum of synergy contributions is
(3.1) FHNw) =Y g1 (w(S) — w(S\{i}) — w({i}))

S

where the notation S 3 ¢ means to sum over all S C N satisfying i € §. If w is
additive, then (N, w) = 0 for all ¢ € N. If w is superadditive, ¢(N,w) > 0 for
all # € N. The a-synergy value o gives player ¢ his individual gain, w({:}), plus
the remaining available non-individual gains, w (N) — 3_.c y w({;}), in proportion
to gf (N, w):

g r SR i} — an ) _ﬂ:lf:'\',j.-'} _ AT TR
{3.2) g (N, w) =w({i}) + S 7 (N,w) w (V) ZM w({i})
fEN &

if 3 7¢4(N,w)# 0 and
JEN
o%(N,w) = &(N, w)
otherwise. Note that for any A > 0, the (Aa)-synergy value is the same as the
a-synergy value. If a; = 1 for all s, then the a-synergy value is denoted by 8 and
called the (normalized) Banzhaf value. If as = (s — 1)I(n — s)! for all s, then the
a-synergy value is denoted by ¢ and called the Shapley value.

The Shapley value was defined in [29].and has been studied extensively (e.g.,
[3, chapters 53-54] and [27]). The Banzhaf value as defined here was mentioned in
[10]. The Banzhaf value was originally defined as the average sum of marginals in
[4] on a subclass of simple games called weighted voting games. This corresponds
to (3.1) with a, = 1/2¥1=1 for all s and the synergy contributions replaced with
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marginal contributions. Of course, such functions on games need not yield pay-
off vectors that satisfy the efficiency condition. Dubey, Neyman, and Weber [9]
characterized such functions that are linear, anonymous, and player-separable, and
so introduced the idea of weighted sums of marginal values. See Malawski [20]
for some characterizations of the absolute Banzhaf value and references to earlier
characterizations. van den Brink and van der Laan [33)] characterized the “normal-
ized” Banzhaf value, which yields allocations proportional to the sum of marginals.
The normalized Banzhaf value and the Banzhaf value as defined here are identical
on simple games and on zero-normalized games. The advantage of the a-synergy
values are that they are subsidy-free while the normalized Banzhaf value is not.

The computation of the Banzhaf value for the savings game is summarized in
the table. Fach upper cell contains the synergy contribution for the player named
in the column header to the coalition named in the row header. The last two cells
record the sum of the synergy contributions and the Banzhaf value.

Synergy Contribution
|Player | A | B | ¢ b ]
[ABCD[[140 | 56 | 44 | 32
ABC | 108 | 108 | 84 |
ABD || 96 | 96 (782
ACD || 84 B1 | &4
AB 24 24
Sum || 452 | 284 | 212 | 188
B || 55.7]35.0[26.1]232

For the cost overrun game, each number in the “ABCD” row and the “Sum” row
is reduced by 20, and so the Banzhaf value selects (49.1, 30.0,21.8,19.1).

For the Shapley value, before summing the synergy contributions, those in the
first row are multiplied by ay = (4 — 1)!(4 — 4)! = 6, those in the second through
fourth rows are multiplied by ag = (3—1)!(4—3)! = 2, and those in the fifth row are
multiplied by az = (2 —1)!(4—2)! = 2. The weighted sums are (1464, 792, 600, 504)
and the Shapley value selects (61,33,25,21). For the cost overrun game, each
weighted sum is reduced by 120, and so the Shapley value selects (56,28, 20, 16).
Since 56-+28+20 < 108, this example shows that the Shapley value is not coalition-
rational on balanced games.

Other a-synergy values can be computed in a similar manner. The next theorem
allows us to determine for a game the set of all a-synergy values simultaneously.

THEOREM 3.3. If (N,w) is superadditive, then the set of o*(N,w) for all non-
zero vectors of nonnegative real numbers a = (ag, as, .. ., an) is the conver hull of

oX' (N,w) fori=2,3,...,n, where x* is the ith unit vector

Proor. If w is additive, then o®(N,w) = £(N,w) for all a, and so the theorem
follows. Now suppose w is not additive. Let

dive = Vsaesysies W08 — w(S\()) = w({i}))

ancl

A=w(N) =3 enw{s}):
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By the superadditivity condition, d; s > 0. Since w is not additive, d; s > 0 for
some ¢ and s. We can now let

de=au (0, i) 1 (E o0 (27 800))
Clearly, As > 0 and 22:2/\3 = 1. Now
o8(Nw) = (i) + A(Tio305di,e) / (X5r Drgrdir)
= Yo Aew() + XiegasAdie/ (Trger (Zhadin))
= S0ohs (w0 + Adiyo /7o dss )
= YreshsoX (N, w)
and the theorem follows. O

For the savings game,
& (N, w) = (24,24, 0,0),
&% (N, w) = (288,204, 168, 156),
5% (N, w) = (140, 56, 44, 32).

Hence any a-synergy allocation is a convex combination of oX (N,w) = (70,70,0,0),
oX’ (N,w) =~ (49.4, 35.0, 28.8,26.8), and oX' (N,w) = (72.1,28.8,22.6,16.5).

We now examine some properties of a-synergy values. It is easy to verify
that a-synergy values are player-rational on superadditive games and are unbiased,
anonymous, proportionate, player-separable, and subsidy-free on all games.

The a-synergy values are not coalition-rational on balanced games. Indeed, for
an a-synergy value, a; > 0 for some s satisfying 2 < s < n. If a; > 0 for some s
satisfying 2 < s < n — 1, then for a veto power game € = ¢2(N,v>*) > 0 which
implies that Zz:ll oMW, 1) =1 — ¢&(N,vH%) <1 = v (N\{n}), and s¢ 0% is
not coalition-rational on the balanced game (N, v'®). If a;, = 0 for all s satisfying
2 < s <n-—1,then a, > 0. Let w(1234) = 8, w(123) = w(124) = w(134) =
w(234) = w(12) = 5, and w(S) = 0 otherwise. Then (3,3,1,1) is coalition-rational
and x = o%(N,w) = (2,2,2,2). Hence, z1 + 22 = 4 < w(12), and so ¢%(N,w) is
not coalition-rational on the balanced game (N, w).

On convex games, Shapley [30] showed that the Shapley value is coalition-
rational and is in the interior of the coalition-rational allocations. This implies that
for weights a sufficiently close to the Shapley weights, the a-synergy value is also
coalition-rational on convex games.

On the other hand, the Banzhaf value is not coalition-rational on convex games.
Indeed, if w = 31u? 4 931?346 then w is convex and

B(N,w) = 318(N,u'?) + 936(N, u***°%)
= 31(2%,2%0,0,0,0) + 95(0,2,2,2,2,2)
= (496,682, 186,186, 186, 186),

and so B(N,w) = (32,44,12,12,12, 12}, which implies that E?:z Bi(N,w) =92 <
93 = w(23456).
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Not all a-synergy values are aggregate-monotone. Indeed, let ¢ = x", and
consider increasing the worth of the grand coalition from a veto power game, w =
vl L ey, Then 7%(N,w) = (1 +¢,¢,...,¢€), and o¥(N,w) = (1+€)2/(1 + ne).
Hence, (00§ /0¢)em0 = 2 —n < 0, and so o® is not aggregate-monotone.

The Banzhaf value is aggregate-monotone on superadditive games. Because
the Banzhaf value is player-separable, it is sufficient to show 9;/0w(N) at super-
additive games (N, w) satisfying w(S) = 0 if |S| = 1. This simplifies

Fi(N,w) = 3 (w(S) — w(S\{i})) = D w(S) = > w(S)

Sal Sot SH#

(by separating the individual terms into separate sums),

Y Bi(N,wy = 3 (218] = IN[Jw($)

jen Scn
(by interchanging summations over j and S), and

2. Bi(N,w)

jEN

Bi (N, w) w(N).

Using the quotient and product derivative rules, the numerator of 84;/0w(N) is

S;N(Q |S] ~ [NT)w(S) (w(N) + Bi(N,w)) = B;(N, wyw(N) | V]

=w(N) 3 (2|8] = [N)w(S) + Bi(N,w) 3 (21S] = |N)w(S)
SCN SAN

=w(N) ¥ (I, w) + BN, w)T V(N = 28) | T w(S) - X w(S)
aoy R

which is nonnegative because (N, w) is superadditive.

The Banzhaf value is neither coalition-monotone nor strongly unbiased on con-
vex games. Indeed, let v(1234) = 32, v(S) =8 if |S| = 3, v(S) =4 if |S] = 2, and
v(S) =0 if [$] = 1. Let w(l) =4 and w(S) = v(S) otherwise. It is easily verified
that v and w are convex, 8(v) = (8,8,8,8), and B(w) = (11%6, %, %, %). Since
B1(v) > p1(w), the Banzhaf value is not coalition-monotone. Since w(R U {1}) >
w(RU{2}) for all R C {3,4} and B1{w) < fz(w), the Banzhaf value is not strongly
unbiased.

The Banzhaf value is not coalition-monotone on simple games. Felsenthal and
Machover [11] provided this counterexample: let N = {1,2,3,4,5}, v = u!?, and
w be the same as v except that w(1345) = 1. Then B(N,v) = (3,1,0,0,0) and
BV, w) = (%, 5 %> 29> 15)- The non-monotoncity is provided by Bi(N,v) >
,61 (N, ’LU)

All a-synergy values are strongly unbiased on zero-normalized games and on
superadditive simple games. Indeed, suppose w(S U {i}) < w(SU{j}) for all § C
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N\{3,7}. If (N,w) is zero-normalized, then
T, 0) = Y sy AR RV () = w(R))
F Y i AR (ORU i) — w(RU 5))
<Y ey, A1 (RO 1)) — w(R)

+ ZRQN\{i,j} a|R|+2(w(R U {7".7}) - UJ(R U {Z}))
= 55V, ).

If (N, w) is superadditive and simple but not zero-normalized, then w = u{*} for
some k € N\{i}, and *(N,w) = x*, which implies 5¢(N, w) < (N, w).

In a superadditive simple game, we say that a player ¢ swings for coalition S
if S is winning and S\{¢} is losing. For a superadditive simple game without a
dictator, the sum in the absolute Banzhaf value formula is the number of times the
player swings. For the federal law game, a Representative swings whenever in a
coalition of (1) 217 other Representatives, at least 50 Senators,and the President, or
(2) 289 other Representatives and at least 67 other Senators. So, a Representative
has the following number of swings:

434\ 27100\ [434) X /100
r=(217)2(8>+(289)2<3>
s=50 5=67

A Senator swings whenever in a coalition of (1) at least 218 Representatives, 49

other Senators, and the President, or (2) at least 290 Representatives and 66 other
Senators. So, a Senator has the following number of swings:

99\ = [435) . [99) X (435
=) 2 *les) 2
r=218 N | =290
The President swings whenever in a coalition of (1) at least 218 Representatives

and between 50 and 66 Senators, or (2) between 218 and 289 Representatives and
at least 67 Senators. So, the President has the following number of swings:

=S E) (S O)ED)

The Banzhaf payoffs can be obtained by dividing the above quantities by 435r +
100s + p. The Banzhaf payoff for a Representative, Senator, and President are
0.00153, 0.00295, and 0.03996, respectively.

4. Shapley Value

In the previous section, we defined the Shapley value ¢ on n-player games as
the a-synergy value with a; = (s — 1)!(n — s)!. An equivalent description is that
the Shapley value gives each player that player’s marginal contribution to each
coalition, averaged over all player orders.

THEOREM 4.1. The Shapley value ¢ is given by

(4.1) o5 (N, w) = INLI' 3 (w (5™) —w (57 {i}))
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where the sum is over all player orders, i.e., one-to-one and onto functions m :
N — {1,2,...,|INI}, and S™ = {j € N : 7(§) < n(3)} is the coalition of player
and the players that come before i in the order w. An equivalent formula is

42w = 2 PR () (s ).
Proor. By definition (3.1),

Pi(N,w) =) (18] = Din — S} (w(S) — w(S\{i}) — w({i}))

S

where n = |N|. Since

3 asi- 0N - st =Y (: 3 :){s —Dl(n - s)!
THE S pe=] M

it follows that
Zi(N,w) = (IS = Dl — [S)! (w(S) — w(S\{i})) ~ ntw({i}).
Ssi
By interchanging the summations over ¢ and S, we obtain

> @i, w) =37 > (8] = Diln — |S))! (w(S) — w(S\{i})) —n! 3 wi{i})

iEN SCN ieS iEN

For the double sum and a fixed coalition .S, the worth w(S) appears as a positive
term with coefficient (S| —1)!(n—|S])! for each i € S, and the worth w(S) appears
as a negative term if S # N with coefficient [S|!(n — |S| — 1)! for each 1 € N\S.
After simplifying the double sum, the coeflicient for w(N) is

(n =Dl n—n)ln=nl,
and if S # N, the coefficient for w(S) is
(5] = Din = |SPHS| = S|t = [S] - 1)!(n — |S]) = 0.

Hence,

/

> Gi(N,w) =nl ( w(N) =) w({i}))
ieN A iEN

Plugging into (3.2) and simplifying, we obtain (4.2). We can also obtain (4.2) from

(4.1) by counting the number of orders in which player i comes after the players in

S\{i} and before the players in N\S. 0

The computation of the Shapley value for the savings game is summarized
in the table. Each row corresponds to one of the 24 possible player orders. In
the eighth row (in boldface), player B decides to cooperate first and is given the
marginal contribution w(B) — w(&) = 0 —~ 0 = 0, player A decides to cooperate
second and is given the marginal contribution w(BA) — w(B) = 24 — 0 = 24, player
D decides to cooperate third and is given the marginal contribution w(BAD) —
w(BA) =96 — 24 = 72, and player C decides to cooperate fourth and is given the
marginal contribution w(BADC) — w(BAD) = 140 — 96 = 44. The other rows are
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calculated in an analogous fashion. Finally, the marginal contributions are averaged
to obtain the Shapley allocation (61, 33, 25, 21).

Order | Marginal Contribution
r(A) | =B) [«C)[«(DI[AB]C] D
[ L. ] 2 3 4 [0 [2d]84] 32
1 2 4 3 I o [24 [24a] 72
1 3 2 4 0 |108] 0 32
Il & 2 3 0 | 56| 0] 84
T ey 4 g 0 |96 [ 44| 0
1 [ 4 3 | 2 0 |56 |84 O
2 | Tt | 3 | 4 24| 0 |84 32
2 1 | 4 .8 24 | 0 [44] 72
) 1 2 4 [|108] 0 0| 32
4 1 2 3 140 0 o | o
=5 -5 |- 2 I 2 9% | 0 |44 | 0
" il 2 |[140] 0 O] 0O
2 3 1 4 0 108 0| 32 |
2 4 1 3 0 |56 | 0| 84
8 0. 2 | 1 4 08| 0 [ 0| 32
4 2 ¥ 1 JNre el o |0 0
3 4 1 L 84 | 56 | 0 0 |
4 3 n 2 40 0o [0 0o |
2 3 4 i 0 | 96 |44 0
2. 4 3 it 0 |56 [84] 0
3 | 2 | 4 | 1 [[96] 0 [44] o
4 2 3 | 1 [[140] 0 [0 0
3 4 2 1 |86 0] 0
4 3 2 1 Mol oo o
: 61 | 33 | 25| 21

For the cost overrun game, the marginal contributions in the table stay the same
except that for each order, the fourth player’s marginal contribution is reduced by
20. Since each player is fourth in one-fourth of the orders, each player’s average
marginal contribution is reduced by 20/4 = 5. Hence, the Shapley allocation for
the cost overrun game is (56,28,20,16), which is not coalition-rational (consider
coalition ABC).

Using (4.2), it is easy to verify that the Shapley value is strongly unbiased and
coalition-monotone on all games.

For a superadditive simple game and each player order, there is exactly one mar-
ginal contribution of 1, corresponding to the pivotal player whose addition changes
a losing coalition to a winning coalition, and all other marginal contributions are 0.
Hence for superadditive simple games, the Shapley payoff to a player is the fraction
of times that player is pivotal among all player orders.

For the federal law game, a Representative is pivotal whenever in a coalition of
(1) 217 other Representatives, at least 50 Senators, and the President, or (2) 289
other Representatives and at least 67 other Senators. So, the Shapley value for a
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Representative is

100
L[ (434 100
fi AT — st
536! ((m) b3 ( : jmtu $)I(317 — 5)'4

a=nll
LK)

43¢ — 100
(l:;) b ( )(:au | H}!gz-:m—_s]!) = 0,0010069

a=0T :

A Senator is pivotal whenever in a coalition of (1) at least 218 Representatives, 49
other Senators, and the President, or (2) at least 290 Representatives and 66 other
Senators. So, the Shapley value for a Senator is

435

1 (99 435
B0 - (AR5 N
5361 ((.1;}) 2, ( )5”” HEH A8 — 1)

r=218
o iy 155

(68) 22

r=200

435Y ‘ \
(66 -+ r)1(469 — r)!) ~ 0.0039658

Since the Shapley value selects allocations, the Shapley value for the President is
1 — (435)(0.0010069) — (100)(0.0039658) ~ 0.16542.

It is interesting to speculate whether the President has roughly 4% of the voting
power related to the passage of federal laws, as suggested by the Banzhaf value, or
more than 16%, as suggested by the Shapley value. Brams, Affuso, and Kilgour [6]
argue that informal analysis and empirical data suggest that the President’s power
should be comparable to the power of at least one half of the Representatives or
Senators combined. As this is more than suggested by either the Banzhaf or Shap-
ley values, Brams, Affuso, and Kilgour advocate the use of a method introduced
by Johnston [16], which suggests that the President has 77% of the power. On
the other hand, Johnston’s method is not coalition-monotone, and Felsenthal and
Machover [11] argue that any allocation method for voting power must be coalition-
monotone. There are a-synergy values that assign the President large powers, e.g.,
the x35%-synergy value assigns the President 99.6% of the power. There is some reg-
ularity to Presidential power assigned by x"-synergy values, e.g., President power
monotonically increases from 9.4% to 99.6% with 7 increasing from 280 to 356 (one
less than needed for a veto override). It is unclear why it would be appropriate to
choose the a, weights with r near but below 356 to be greatest. Perhaps further
investigation of which a-synergy values are coalition-monotone would be helpful.

For the veto power games, it is straightforward to calculate

n —1 i B
.".'_l"-"-"'nfr L.J.."J £ ZSf'r (ZL—I)’ ifi=1
i (2=, i£5>1
and
o ==L ifi=1
PN = ot T

The table provides a numerical comparison among the Banzhaf, Shapley, and
coalition-rational values on small veto power games. The key observation is that
a-synergy values detect differences in the powers of the players in different veto
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power games while a coalition-rational allocation method would not.

?r I 3 4 4 | 5 5 | &
| r M A W2 4 3 2
1(N,v0™y | 0.60 | 0.40 [ 0.70 [ 0.29 | 0.48 [ 0.79

(N, vPT) 0,67 | 0.50 | 0.75 | 0.40 | 0.60 | 0.80
| coalition-rational || 1.00 | 1.00 | 1.00 | 1.000 | 1.00 | 1.00

5. Weighted Nucleoli

A coalition-rational allocation z for the game (NN, w) satisfies D ;g 2; > {u(S)
for all § € N. This motivates us to find an allocation that minimizes the quantities
w (S) — Y ;es i Of course, we cannot simultaneously minimize all of these quan-
tities. Instead, we will minimize the maximum of these quantities after multiplying
each quantity by some weighting factor.

DEFINITION 5.1 (Nucleolus). Suppose (N,w) is a coalition game and a =
(a1,asq,...) is a sequence of positive real numbers. The a-excess of coalition S
at an allocation z is the quantity

e (S,z) = ajs| (w (S) — 23:7') )

€S

The a-excess vector at an allocation z, denoted e®(z), is the vector of numbers
e®(S,z) for S C N ordered from largest to smallest. We order excess vectors
lexicographically, that is, e(z) <, e(y) if there is a positive integer k for which
ej(z) = e;(y) for j < k, and ex(z) < ex(y). The a-nucleolus v*(N,w) for (N, w) is
the player-rational allocation whose a-excess vector is the lexicographic minimum.
The a-prenucleolus for (N,w) is the allocation (not necessarily player-rational)
whose a-excess vector is the lexicographic minimum. If a is a constant sequence,

we obtain the nucleolus v = v®. If ap = 1/k, we obtain the per capita nucleolus
PC a
v =yt

The nucleolus was defined by Schmedler [28], and the per capita nucleolus was
defined by Grotte [12]. Wallmeier [34] defined weighted versions but limited his
investigation to nonincreasing sequences a. Derks and Haller [7] considered a more
general class of weighted nucleoli in which the weights depend on n and S, instead
of only the cardinality of 5. Our smaller class was chosen so that the values would
be anonymous.

The excess e*(S,z) is a measure of coalition S’s dissatisfaction with the allo-
cation z. The allocation z is coalition-rational if and only if all excesses at « are
nonpositive. By minimizing the maximum excess, the a-nucleolus will be coalition-
rational if coalition-rational allocations exist. Since the veto power game (N, v"")
has the unique coalition-rational allocation x?, it follows that v*(N,v") = x* for
arbitrary a.

It is not immediately clear from its definition whether an a-nucleolus exists
and is unique. Proofs appear in [7], 28], and [34]. The approach for the existence
proof is to note that the set Xy of player-rational allocations is nonempty and
compact. We now inductively construct subsets of Xy and subcollections of Cy, the
collection of all coalitions: Given a nonempty and compact set of allocations Xy
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and a non-empty collection Cj, of subsets of N, the function
z) = maxe® (S, z
() = maxe® (5,)
is a continuous function on Xy, and so
biy1 = mi
k1 = 10in fi(z)

exists, the set
ch+1 = {CE e Xy : fk(:v) = bk}
is nonempty and compact,

Biy1={S €Cr:e*(S,z) =b for all z € Xp4,}
is nonempty, and the collection
Cr+1 = Cx\Br4a

is a strict subset of Cp. Eventually, Cry1 = &, and the elements of Xk41 are
allocations whose a-excess vector are the lexicographic minimums among allocations
in Xo. Notice that each b, and X} can be found by solving a linear program.

By definition, every a-nucleolus is player-rational on all games. It is easy to
verify that every a-nucleolus is unbiased, anonymous, proportionate, and player-
separable on all games. Before we consider other properties, we will determine
the nucleolus and pexr capita nucleolus for our examples. Instead of solving linear
programs, we will propose an allocation and provide a verification that the proposal
is the a-nucleolus.

For the savings game, the table shows the excesses for the allocations z =
(74,28,22,16), y = (84,20, 20, 16), and » = (68, 36, 20, 16).

g ]e(S’,x) e(S,y) | e(S,2)

ABC | =16 | —-16 | —16
"ABD | —22 24 =7
ACR)| =398 =20 | —a& |
BCD| —66 | —72 | —56 |
AB 78 | —80 &0
AC | —06 | —88 | —104
- AD | —90 B | i
BC | —50 56 | —40 |
" BD | —44 | —52 | —38 |
cD 38 | —36 36
| A —74 | —68 84
B | —28 | —36 20
C —29 -20 =
D | 16 | =18 | —16

The first three components of e(z) are —16, —16, and —22, and the first three
components of e(y) are —16, —16, and —20; hence, e(z) <jep e(y). The vectors
e(y) and e(2) agree on the first 7 components and eg(y) = —52 < —36 = es(2);
hence, e(y) <iew €(2). This shows that neither y nor z is the nucleolus.

The allocation & = (74, 28, 22, 16) is the nucleolus for the savings game. Indeed,
suppose p is an allocation satisfying e(p) <je. e(z). First, since e;(z) = —16, it
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follows that e(S,p) < —16 for all S # &, N. In particular,
-16 > e(ABC,p) = 108 — pa —pp — PC
-16 > e(D,p) = —pp.
Summing these two inequalities and using the efficiency condition, we obtain
32 > 108 —pa —pPB —Pc — PD
=108 — 140 = —32.

So, the inequalities must be equalities, and we have pp = 16 and e(ABC,p) =
e(D,p) = —16. Second, since ¢;(p) = e;(x) for i < 2, and e(p) <jes (), it follows
that e(S, p) < e3(z) = —22 for all S # @, N, ABC, D. In particular,
22 > e(ABD,p) =96 —p4a —pp — PD
—22 > ¢(C,p) = —pc.

Summing these two inequalities and using the efficiency condition, we obtain
—44 > 96 —ps —pB —PCc — PD
=96 — 140 = —44.

So, the inequalities must be equalities, and we have pc = 22 and e(ABD,p) =
e(C,p) = —22. Third, since e;(p) = ¢;(z) for i < 4, and e(p) <ies e(z), it follows
that e(S,p) < es(z) = —28 for all S # &, N,ABC, D, ABD, C. In particular,

~28 > ¢(ACD,p) =84 —pa—pB —PD

—28 > €(B,p) = —PB:
Summing these two inequalities and using the efficiency condition, we obtain

—56 > 84 —pa —pB —Pc —PD
= 84 — 140 = —56.

So, the inequalities must be equalities, and we have pg = 28. Fourth, using the
efficiency condition, ps = 140 — pg — pc —pp = 74, and p = z.

The allocation z = (84,18,12,6) is the nucleolus for the cost overrun game.
Indeed, the reader can readily verify that the first six components of e(x) are again
the six excesses e(ABC,z) = e(D,z), e(ABD,z) = e(C,z), and e(ACD,z) =
e(B, ). The argument of the previous paragraph, with w(ABCD) changed from
140 to 120, shows that z is the nucleolus for the cost overrun game.

Since vy (ws2VINgS) < py (wOOst Overuny the nucleolus is not aggregate-monotone
on balanced games.

The per capita nucleolus for the savings game is « = (101.6,17.6,12.8,8). In-
deed, the first seven components of e”¢(z) are

ePC(ABC, z) = eF°(D,z) = -8
ePC(ABD,z) = e"¢(CD,z) = —10.4
ePC(ACD, z) = P9 (BD,z) = 7°(C,z) = —12.8.

Suppose p is an allocation satisfying e (p) <ieo e7(z). First, since ef“(z) =
—8, it follows that e(S,p) < —8 for all S # @, N. In particular,

—8 > ¢PC(ABC,p) = (108 - pa — ps — pC)/3
8 > eFY(D,p) = —pp.
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Adding three times the first inequality to the second inequality and using the effi-
ciency condition, we obtain
32 > 108 —pa —pp — pc —pp = —32.

So, the inequalities must be equalities, and we have pp = 8 and e"’“(ABC,p) =

e"C(D,p) = —8. Second, since e (p) = eF'%(z) for i < 2, and ePC(p) <peu
ePC(xz), it follows that ePC(S,p) < ePC(x) = —104 for all § £ @, N, ABC, D. In
particular,

~10.4 > ePC(ABD,p) = (96 — ps — p5 — pp)/3
~10.4 > PC(CD,p) = (—pc — pp)/2.

Adding three times the first inequality to two times the second inequality and using
the efficiency condition and pp = 8, we obtain

—52 > 96 —pa —pB —Ppc — 20p
=96 — 140 — 8 = —52.

So, the inequalities must be equalities, and we have pc = 12.8 and ePC(4ABD, p) =
eP9(C,p) = —10.4. Third, since ef°(p) = eF%(z) for i < 4, and eFC(p) <jen
ePC(z), it follows that eFC(S,p) < ef(z) = —12.8 for all S # @, N, ABC, D,
ABD,CD. In particular,

~12.8 > eP9(ACD,p) = (84 — ps — pc — pp)/3
~12.8 > eP°(BD, p) = (—ps — pp)/2.

Adding three times the first inequality to two times the second inequality and using
the efficiency condition and pp = 8, we obtain

—64 > 84 —ps—pr —pc — 2pp
=84 — 140 — 8 = —64.

So, the inequalities must be equalities, and we have pg = 17.6. Fourth, using the
efficiency condition, p4 = 140 — pgp — pc — pp = 101.6, and p = z.

The per capita nucleolus for the savings game is « = (96.6,12.6, 7.8, 3). Indeed,
the first six components of eF¢(z) are the six excesses ePC{ABC,x) = ePC(D, 1),
ePC{ABD, x) = eFC(CD, ), and e"C(ACD, 2) = ePC(BD,z). The argument of
the previous paragraph, with w(ABCD) changed from 140 to 120, shows that « is
the per capita nucleolus for the cost overrun game.

The approach we have been using to verify that a proposed allocation is the
a-nucleolus for a game was first generalized by Kohlberg [17] to the nucleolus and
then by Potters and Tijs [26] for the a-nucleolus. They showed that an allocation
is the a-nucleolus if and only if each collection of coalitions whose excess is greater
than some number satisfies a combinatorial balancing condition.

We now compute the nucleolus and per capita nucleolus for the federal law
game. Since the a-nucleolus is unbiased, the payoff to each representative is the
same number 7, the payoff to each senator is the same number s, and the payoff to
the president is p. Using the efficiency condition, 4357 + 100s 4+ p = 1. Since the
a-nucleolus is player-rational, the winning coalition excesses are nonnegative and
the losing coalition excesses are nonpositive. If the weights a are nonincreasing (as
is the case for the nucleolus and per capita nucleolus), it follows that the maximum
excesses will occur with the minimal winning coalitions.. The excess for the regular
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minimal winning coalitions is azeq(1 — 2187 — 505 — p) = ag69(217r + 50s), and the
excess for the veto override minimal winning coalitions is ags7(1 — 2907 — 67s). In
order to minimize the maximum excess, we must solve

min oz

B.t z > a269(217r -+ 503)
z2> CI,357(1 — 290r — 678)
435r +100s+p =1
r>0,s>20,p2>20

For the weights a of interest,
r=10
s = azsr/(50age0 + 67ass7)
p = (50az69 — 33ass7)/(50az69 + 67azs7).

For the nucleolus, s = 1/117 ~ 0.0085 and p = 17/117 ~ 0.1453. For the per
capita nucleolus, s ~ 0.0075 and p ~ 0.2501. Just as for the veto power games, the
a-nucleoli allocate more to the strongest player in the federal law game than the
a-synergy values. It is interesting to note that for large asgg in comparison to assy
the a-nucleolus allocates almost all power to the President. This suggests that if
larger coalitions are considered far less important than smaller coalitions (perhaps
because smaller coalitions are far more likely to form), then Presidential power is
greater.

Every a-nucleolus is subsidy-free on all games. Indeed, suppose (N, w) is a
game in which player k£ is a dummy and z is a player-rational allocation for which
z # w({k}). Since z is player-rational, z > w({k}). We will show that z is not
the a-nucleolus. Since k is a dummy, for all coalitions S containing k, it follows
that

e*(S\{k},z) — e(S,z) = —w(S\{k}) — w(S) + zx
> —w(S\{k}) — w(S) + w({k})
=0

By taking a small amount from k and giving it to other players, we can obtain
a new player-rational allocation y satisfying e§(y) < e%(z), and so z is not the
a-nucleolus.

Every a-nucleolus is strongly unbiased on all games. Indeed, suppose (N, w)
is a game in which player ¢ is weaker than player j, and z is a player-rational
allocation for which z; > x;. We will show that  is not the a-nucleolus. For all
R C N\{4,j}, our supposition implies

e*(RU{j},z) —e*(RU{i},z) = w(RU{j}) —w(RU {i}) — z; + z;
> 0.

Hence, by taking a small amount from ¢ and giving it to j, we can obtain a new
player-rational allocation y satisfying e*(R U {j},z) > e*(RU {j},y) > e*(R U
{i},y) > e*(RU {i},z) for all R C N\{4,j} and e*(S,z) = €%(S,z) for all S C N
satisfying S N {i,7} = {¢,j} or @. Thus, e®(y) <iex €*(z), and so z is not the
a-nucleolus.

The nucleolus is not aggregate-monotone on convex games. Hokari [13] pro-
vided the following counterexample. Let N = {1,2,3,4} and v(1234) = 10,
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v(123) = 4, v(124) = v(134) = v(234) = 6, v(12) = v(14) = v(23) = v(2d) =
v(34) = 2, and v(5) = 0 otherwise. It can be verified that (V, v) and (N, v+ 2ut2%9)
are convex games, v(N,v) = (2,2,2,4), and v(N, v+ 2u'*) = (3,3, 3, 3),

The per capita nucleolus is aggregate-monotone on all games, Young, Okada,
and Hashimoto [38] proved this, and we sketch the proof for the per capita prenucle-
olus. Suppose (N, v) and (N, w) are games satisfying v(N) < w(N) and v{8) =
w(&) for all § # N. Let f be defined by fi(z) = x; + &, where £ = (w(N) —
v(N))/|N|. Clearly, f is a bijection between the allocations of (W, v) and the
allocations of (N, w), Also,

W(8) =D _3:)/18 = (w(S) - ¥ (filz) —€))/|S]
i€S i€S
= w(S) = > fi(2)/ 18] +e,

iES

that is, in going from z to f(z), the excesses all increase by e. Thus, if z is the
<lex minimum on the set of allocations of (N, v), then f(2) is the <j., minimum
on the set of allocations of (I, w). That is, if z is the per capita prenucleolus, then
f(z) is the per capita prenucleolus.

Theorem 6.1 will show that no a-nucleolus is coalition-monotone on balanced
games.

It the weights a are nonincreasing (which includes the nucleolus and per capita
nucleolus), then the a-nucleolus is not coalition-monotone on simple games., In-
deed, let (N, v} be the five-player superadditive simple game with minimal winning
coalitions 134, 135, 145, 234, 235, and 245. Then v*(N,v) = (0,0, 31§13 be
cause the corresponding excess for each minimal winning coalitions is %uu? the only
other positive excess is %{14 < :]1-{r,3 for 1234, 1235, and 1245, and if 2 is any other
player-rational allocation satisfying e?(z) <jx €%(0,0, %, £, 3), then e%(S,z) <
%a3 for all minimal winning coalitions S, azz; > 0, and azzy > 0, which when
summed yield 2a3 < 2a3 implying that these inequalities hold with equality yield-
ing z = (0,0, %, %, %) Let (N,w) be the five-player superadditive simple game
with minimal winning coalitions 134, 135, 145, 234, 235, 245, and 123. Then
VAN, w) = ( %, %, %, %, %) because the corresponding excess for each minimal win-
ning coalitions is %CL3, the only other positive excess is %a4 < %(Zg for the four-player
coalitions, and if z is any other player-rational allocation satisfying e*(z) <jex
e*($,%,3, 1, 1), then e2(S,z) < 243 for S = 134, 145, 235, 245, and 123, which
when summed yield 2a3 < 2a3 implying that these inequalities hold with equal-
ity yielding z = (%,%, %, %, %) Since v§(N,v) > v¢(N,w), v* is not coalition-
Monotons,

It is an open question whether some a-nucleoli are coalition-monotone on convex
or simple games. It would also be interesting to characterize which a-nucleoli are

aggregate-monotone on all games.

6. Method Characterizations

In the following table, we state the maximal class(es) of games (among all,
superaddifive, balanced, convex, zero-normalized, and/or simple} on which each
method satisfies each property. There are question marks when it is known that
the property does not hold on any larger classes but it is not known whether the
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property holds on the stated class. All of these methods are unbiased, anonymous,
proportionate, and player-separable on all games.

E |'j @ o HJ"'E‘
Subsidy- | e All All All All
Free |
Strongly | Zero U
Unbiased All Super Simple ALl All All
- Player- " ,
Rational Super Supen Super All All
Coa,‘l e None None Convex | Balanced | Balanced
Rational |
Aggregate- —
Monotone All Super All None All |
| e All | Zero N Convex? | Al MNone Convex? |
Monotone .

Each method has its positive and negative features. In particular, the Shap-
ley value and the per capita nucleolus satisfy most of the properties. However,
the Shapley value is not coalition-rational on balanced games and the per capita
nucleolus is not coalition-monotone on balanced games. Since both properties are
desirable, it is natural to ask whether a method exists that has both properties.

THEOREM 6.1. There 1is no coalition-rational and coalition-monotone allocation
method for balanced games with four or more players .

This impossibility was shown for five or more players by Young [35]. The proof
below is by Housman and Clark [15].

PROOF. Suppose « is a coalition-rational and coalition-monotone allocation
method for balanced games. Let N = {1,2,3,4} and w(N) = 2, w(123) = w(124) =
w(134) = w(234) = w(13) = w(14) = w(23) = w(24) = 1, and w(S) = 0 otherwise.
Clearly, (%, %, %, %) is coalition-rational, and so (N, w) is a balanced game. Let w?,
w?, w3, and w* be the same as w except that w!(134) = 2, w?(234) = 2, w*(123) =
2, and w*(124) = 2. Suppose z is a coalition-rational allocation for (N, w!). Then
0=w?2) <zp =w(N)—z; — 25 — 34 < w'(N)—w'(134) = 0, and so z9 =
0. Furthermore, #3 = 2o + o3 > w'(23) =1 and ¢4 = 23 + 24 > w'(24) = 1. It
now follows from efficiency and z; > 0 that 23 = x4 = 1. Hence, (0,0,1,1) is the
only possible coalition-rational allocation, and it is easily verified that (0,0,1,1)
is coalition-rational. Since « is coalition-rational, a(w!) = (0,0,1,1). Analogous
arguments imply a(w?) = (0,0,1,1), a(w?®) = (1,1,0,0), and a(w?) = (1,1,0,0).

Notice that w(134) < w'(134) and w(S) = w!(9) for all § # 134. Since «
is coalition-monotone, a1(w) < ap(w!) = 0. Analogous arguments imply c;(w)
< oi(w') = 0 for i = 1,2,3,4. But this violates the efficiency of a(w). This
contradiction proves the theorem. ]

Theorem 6.1 shows that there are limits to the number and strength of the
fairness properties we can impose. If players are able to choose whether or not
they will cooperate in a joint economic venture, the use of a coalition-rational
method, such as the weighted nucleoli, is indicated, and if changes in coalition
worths are unlikely, then the coalition-monotone property is not crucial. As argued
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by Felsenthal and Machover [11], the measurement of voting power should use a
coalition-monotone method such as the Shapley value and other, as of yet uniden-
tified, weighted contribution values; the loss of the coalition-rational property is
bolstered by our earlier remark that coalition-rational methods do not recognize
the power differences among the dictator and veto power games.

Theorem 6.1 also suggests that there may be greater possibilities if we can re-
strict ourselves to smaller classes of games. For example, we have already noted that
the Shapley value is coalition-rational and coalition-monotone on convex games.
Housman and Clark [15] showed that there are many coalition-rational and coalition-
monotone allocation methods (the nucleolus and per capita nucleolus being two of
them) when restricted to three-player balanced games.

Some collections of properties characterize a single allocation method. Al-
though we want methods to satisfy properties on large classes of games, it is useful
to characterize methods on the smallest class of games possible.

player-separable requires that the allocation of a sum of two games, where one
game is additive, is the sum of the allocations for the two games. Mathematically,
it would perhaps be elegant to strengthen this property by removing the restriction
that one game be additive. This has a real-world fairness interpretation when a
coalition game could be considered the sum of separate games (e.g., the savings
game may be the sum of savings from land acquisition, materials purchasing, and
labor). The allocation from the sum game and the sum of the allocations from the
separate summand games should be the same. Otherwise, the method of accounting
has an effect on the allocation.

DEFINITION 6.2 (Additive Property). An allocation method « is addilive on
a set I' of coalition games if a(N,v +w) = a(N,v) + a(N,w) for all (N,v) € T,
(N,w)eT, and (Nyv+w) el

The egalitarian method and Shapley value are additive. No other a-synergy
value is additive. The a-nucleoli are piecewise additive, that is, an a-nucleolus is
additive on each element of some partition (the partitioning depending on a) of
the space of all games into convex sets. The following theorem was first proved by
Shapley [29].

THEOREM 6.3. If an allocation method « is unbiased, player-separable, and
additive on conver games, then « is the Shapley value.

Proor. The Shapley value clearly satisfies the four properties. We showed
in section 1 that given any game (N,w), we can write w = >,y dru’, where
u? is the unanimity game on T' and dr is a number dependent on w. Since «
is unbiased and player-separable, a(N,dru’) = (dr/|T|)xT. Since « is additive,
a(N,w) = > rcy a(N,dru”). This shows that the method is uniquely determined
at each game. We can limit our characterizing class to convex games because
the unanimity games are convex and any convex game can be written as a linear
combination of unanimity games. 1

We can strengthen aggregate and coalition monotonicity one step further.

DEFINITION 6.4 (Strongly Monotone Property). An allocation method « is
strongly monotone on a set I' of coalition games if «;(N,v) < a;(N,w) for all
(N,v) €T', (N,w) €I, and i € N satisfying v(S) — v(S\{i}) < w(S) — w(S\{i})
for all S C N containing <.
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Young [35] proved the following theorem by inducting on the number of non-
zero terms in the sum w = Y . v dru’.

THEOREM 6.5. If an allocation method o is unbiased and strongly monotone
on superadditive games, then « is the Shapley value.

We have suggested what a fair allocation method should select when games are
added (player-separable and additive) and when some of the coalition worths are
changed (aggregate, coalition, and strongly monotone). The last property suggests
what a fair allocation method should select if some players want to renegotiate
their payoffs amongst themselves. Suppose an allocation z has been proposed, the
players in a coalition T" wish to renegotiate amongst themselves, and the remaining
players are satisfied with their payoffs. To determine its worth in the renegotiation,
a coalition S of T" should be able to join with a coalition @ outside of T" as long as
the players in ) are compensated in accordance with . Presumably, S will choose
() to maximize its worth.

DEFINITION 6.6 (Reduced Game). Let (N,w) be a game, T a coalition, and
z an allocation. The reduced game with respect to T and z is the game (T, w'®)
defined by

[0 itS=0
whe(§) = ierts if S =T
MaxQCN\T (w(S uQ) - EiEsz) otherwise

For the savings game (N,w), the coalition T = {4, B}, and the egalitarian
allocation x = (35, 35, 35, 35), the reduced game (T, w*) is defined by wT*(4AB) =
x4 +xp = 70, wH*(A) = max{0,0 — 35,0 — 35,84 — 70} = 14, and wT*(B) =
max{0,0-35,0—35,0~70} = 0. Notice that £ (T, wh®) = 42 # 35 = £4(N,w). If
the egalitarian method is used to allocate, renegotiations among smaller coalitions
may result in inconsistencies. Formally, the egalitarian method is not reduced game
consistent.

DEFINITION 6.7 (Reduced Game Consistent Property). An allocation method
a is reduced game consistent on a set I' of coalition games if (N,w) € T, T'C N,
and T # @ implies (T, w"®) € T and oy (T, w"*) = oy (N, w) for all 5 € T..

Notice that the reduced game consistent property insists that the reduced games
created are in the focal class of games. This may force us to expand the class of
games under consideration. For example, the 3-player veto power game is super-
additive and simple, but the reduced game with respect to any pair of players and
the egalitarian allocation is neither superadditive nor simple. So, the egalitarian
method is not reduced game consistent on superadditive or simple games.

Suppose « is a player-separable, strongly unbiased, and reduced game consis-
tent allocation method. Suppose x = a(N, w) for the savings game (N, w). Since z
is strongly unbiased, 84 —zg —zp > 0, and so wAB*(AB) = x4+ 25, wAP?(A) =
84 — 2o — 2p, and wP?(B) = 0. By Theorem 2.7,

aB(AB,wAB,a:) e EB(AB,’LUAB"T)
I N
= -9[;3_4 +a2p—(Bd—2o—2xp})

= %[]4H——84)::28.
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Since « is reduced game consistent, zp = 28. Similar arguments using reduced
games on AC and AD require that z¢ = 22 and zp = 16. By the efficiency
condition, z = (74,28, 22, 16), which is the (pre)nucleolus.

THEOREM 6.8. If an allocation method o is anonymous, player-separable, pro-
portionate, and reduced game consistent on all games, then o is the prenucleolus.

Sobolev [31] proved this theorem. Unlike the motivating savings game exam-
ple, the proof requires the focal game to be embedded in multiple ways inside an
enormously larger game. Orshan [24] was able to obtain the same conclusion using
unbiased instead of anonymous.

7. Summary

We have described several classes of coalition games, allocation methods, and
fairness properties. We have determined which methods satisfy which properties
on which classes of coalition games. We have shown that a set of fairness properties
can be mutually inconsistent on a class of coalition games. We have also shown that
some sets of fairness properties can uniquely characterize an allocation method. No
method appears to be perfectly fair for all circumstances, and so it is important to
identify the fairness properties most appropriate for any given class of models. For
example, the coalition-monotone property is particularly compelling in measuring
voting power while the coalition-rational property is particularly compelling when
economic agents can choose whether or not to cooperate. A careful examination
of particular situations are likely to lead to different, and perhaps new, fairness
properties.

This leaves many questions unanswered or even as yet unasked. There are other
classes of games, other allocation methods and set-valued solution concepts, and
other fairness properties either described in the literature (see the references cited
in the introduction) or yet to be discovered. In addition to coalition games, there
are other mathematical models of cooperation such as nontransferable utility games
[8, chapter 55], partition function form games [5], and partially defined games [14].

For the reader who would like to make a contribution, choose a situation and a
corresponding model. Examples would be airport landing fees modeled as convex
coalition games or Presidential power in legislation modeled as a simple coalition
game. Intuit what seems correct. Perhaps it is that each airplane landing should
pay an equal share of the cost for a runway only as long as was needed or that the
President should have at least as much power as all of the Senators combined. Apply
known allocation methods such as the Shapley value and nucleolus. Think more
deeply about the properties that an allocation method should have in your context
and characterize which allocation methods satisfy the properties you have defined.
Perhaps you will characterize a method that confirms your intuition or find that
your proof contradicts your intuition. Either way, you will have learned something
and made a contribution. So, ask your own questions and find the answers!
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