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ABSTRACT. This study deals with the initial understanding that advanced undergraduate
mathematics students exhibit when presented with a new concept in an environment requir-
ing self-generation and self-validation of instances of the concept. Data were collected in
spring of 1995 through interviews with 11 third and fourth year undergraduate mathemat-
ics students. We discuss the data from the perspective of the student’s concept image and
introduce the notion of learning event to indicate when a student communicates and applies
a new understanding of a concept. We infer that the students in our study who employed
an example generation learning strategy were more effective in attaining an initial under-
standing of the new concept than those who primarily employed other learning strategies
such as definition reformulation or memorization.

1. INTRODUCTION

A central goal of upper level undergraduate mathematics courses is to
enable students to understand and use mathematical abstraction and for-
malism. For example, in the typical real analysis or algebraic structures
course, students are expected to absorb scores of formal definitions and
theorem statements which are then used to prove or disprove many other
statements given in homework and exam problems. We are interested in
how students develop an initial understanding of a formal concept. Our
focus on the initial stages of learning new concepts is important because
of the large number of such concepts we expect students to learn during a
typical upper level undergraduate mathematics course and because a stu-
dent’s initial understanding of a concept often persists despite the presence
of examples and information which conflict with this initial understanding
(Davis and Vinner, 1986).

We adhere to the constructivist perspective that students actively con-
struct personal interpretations of knowledge (Ernest, 1991; von Glasers-
feld, 1984), and use the theory of concept image/concept definition origi-
nally proposed by Vinner and Hershkowitz (1980), developed by Tall and
Vinner (1981), and modified by Moore (1994). A concept definition is
“a formal verbal definition that accurately explains the concept in a non-
circular way, as might be found in a mathematics textbook” (Moore, 1994
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structure that is associated with the concept, which includes all the mental
pictures and associated properties and processes. It is built up over the
years through experiences of all kinds, changing as the individual meets
new stimuli and matures” (Tall and Vinner, 1981: p. 152). That portion
of the concept image which is activated at a particular time is called the
evoked concept image. Note that we consider verbal reformulations of a
concept by the student as part of the student’s evoked concept image, what
Tall and Vinner refer to as the personal concept definition. Tall and Vinner
use their theory to examine the “potential conflict factors” which arise from
secondary school instruction related to sequence limit, function limit, and
function continuity. Potential conflict factors include insufficiently devel-
oped, incorrect, and contradictory parts of the concept image.

We are interested in the initial development of a student’s conceptimage
immediately after being presented with a concept definition. Because of the
personal and internal nature of a concept image, a description of its state
and development must be inferred by the student’s verbal and written com-
munications. Instead of well-formed concept images, our object of study
are significant changes in the evoked concept image. In this context, inter-
viewer questions, comments, and body language could have a profound
effect upon the conceptimage formed by the student. A student explanation
of his or her understanding of the concept definition can give a glimpse
of the student’s concept image, but it may also cause further development
in the student’s concept image. Given the impossibility of directly observ-
ing the developing concept image, we will say that a learning event has
occurred when the student communicates and applies a new understanding
of the concept. A communication could be verbal or written and could be
an example, a reformulation, or an explanation. An application involves
a use of the new understanding to solve a new problem or re-explain the
answer to a previous question. We suggest that such observable learning
events correspond to the unobservable changes in concept image.

In addition to the concept definition — concept image scheme outlined
above, Moore (1994: p. 252) discovered a third aspect of concept under-
standing: concept usage, “which refers to the ways one operates with a
concept in generating or using examples or in doing proofs”. These three
aspects — concept definition, concept image, and concept usage — constitute
what Moore calls the concept-understanding scheme. We have also found
this last aspect, concept usage, to be important in learning and working with
a new concept. Our data reveals that example usage, particularly example
generation and verification, is crucial for understanding a new concept.

Moore’s work (1994) with undergraduate students in the U.S. dealt
with the transition from calculus to formal proof such as that encountered
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in courses in linear algebra, abstract algebra, and analysis. Some of the
sources of difficulty students had in doing proofs were inability to state the
definitions, little intuitive understanding of the concepts involved, inade-
quate concept images, and inability or unwillingness to generate and use
their own examples (Moore, 1994: p. 251). Our study primarily deals with
this beginning phase during which students acquire knowledge of new
concepts from definitions before applying them in proofs. As pointed out
by Moore, students must be able to use definitions to obtain the overall
structure of proofs. In Selden and Selden (1995), it is argued that students
inability to “unpack” informally written mathematical statements into the
language of predicate calculus precludes their ability to discern the top-
level logical structure of the proof (“proof framework™) of a theorem and
thereby determine its correctness. From the perspective of a developmen-
tal progression, we see the acquisition of concepts from definitions and
examples as preceding the determination of proof frameworks, which in
turn is followed by the construction of proofs.

We attempted to study the evoked concept images arising when a stu-
dent is learning a new mathematical concept and what factors facilitate
movement towards a correct understanding of the concept. Students were
presented with a formal written definition (concept definition) and observed
reacting to various stimuli including neutral requests to explain the stu-
dent’s understanding, verification questions, and interviewer leading ques-
tions and explanations when necessary. We attempted to identify learning
events, explain the stimuli prompting learning events, and determine the
effects of long-established concept images.

2. THE CURRENT STUDY

Two interviews were conducted at Allegheny College by the authors: a
preliminary interview constituting a pilot study in the fall of 1994 and a
second interview during the spring of 1995. The authors did not discuss
the results of the pilot interview with the participants and the present
study is based on the results of the second interview. We interviewed 11
students (6 male, 5 female) and based upon their past performance in
mathematics classes, the 11 students constituted four ability level groups
in descending order as follows (names have been changed): Ann, Andy,
Art; Betty, Brenda, Beth; Carl, Carol, Chad; and Dan, Don. All but one of
the students were mathematics majors? who had successfully completed
a foundations course similar to the one in Moore’s study, linear algebra,
a seminar on set theory and the foundations of analysis, and introductory
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who had taken linear algebra and an automata course. Brenda was a junior
while the rest were seniors.

Allegheny College is a small (student population size is under 2000)
liberal arts institution which emphasizes close interaction between stu-
dents and faculty (the student to faculty ratio is 11 to 1). The students
in our study had been exposed to a variety of teaching styles including
the lecture method, lecture supplemented by computer laboratory sessions
using Mathematica, lecture with some small group activity, and cooperative
learning with small groups. These were students who were approaching
the end of their undergraduate studies and were intending to continue their
mathematics education in graduate studies (1-2 of the students) or to be
employed in ways that use mathematics such as teaching secondary school
or actuarial work (9—10 of the students).

The students were interviewed individually with the sessions lasting
from 20 minutes to an hour and consisted of observing and interacting with
cach student as he/she learned a new mathematical concept. The interview
experience was independent of any course the student was currently taking
and the concept definition was not one to be found in any textbook used in
any of the courses the students had previously taken. Certainly the students
had had previous experience with the ideas used to define this new concept,
but the purpose of the interview was to observe how students learn a new
concept, The format for the interview consisted in presenting the student
with a concept definition on a sheet of paper (definition page) with plenty of
space for the student to reformulate or generate examples of the definition.
This was followed by presenting the student with several more pages
containing questions which asked the student to perform various tasks.

The students were encouraged during the interview to write on the pages
and to “think out loud”. We often asked students to explain their thinking
whether or not previous work appeared correct to us. This allowed us
to observe aspects of their evoked concept images, and helped to prevent
students from inferring that only incorrect arguments on their part would be
challenged. They could refer to any previously given pages throughout the
interview. The interviews were audiotaped and detailed notes were kept by
the interviewers. During the interviews, the authors tried not to intervene
except in situations where it became clear that no further progress would
be made. The first level of intervention were requests for clarification of
student comments and written work. In some cases, the interviewer had to
remind the student of the meaning of some of the terms used in the concept
definition (we will refer to these as base concepts). This was done so these
students would have an opportunity to progress to the later questions and
finnich the interviesw
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The five interview pages are reproduced below. The definition page

contained the following instructions with the concept definition printed at
the top. In addition, the instructions, but not the definition, were read to
the student by the interviewer.
Instructions. You will have a few minutes to study the following mathematical definition.
You may write on this paper, and you will always have access to this paper during the
interview. It would be helpful if you would state or write what you are thinking as much as
possible.

Definition. A function is called fine if it has a root (zero) at each integer.

The concept definition was purposely designed to allow for a variety of
evoked concept images of the base concepts; function and root. Functions
may be thought of symbolically, graphically, numerically, and verbally
(Leinhardt, Zaslavsky and Stein, 1990), and as objects or processes (Brei-
denbach, Dubinsky, Hawks and Nichols, 1992). Since the function domain
was left unspecified, students were implicitly given the opportunity to
choose a domain: complex, real, or some subset of these sets. Roots can
be thought of as inputs evaluating to zero, the end result of a factorization
procedure, or as intersections of the function’s graph with the z-axis. All
of the above described evoked concept images (and more) were observed
in the students.

After five to ten minutes the students were then presented with the
generation page. Based upon the results of our pilot study we determined
that student generated examples and reformulation played important roles
in eliciting learning events. On the generation page we attempted to induce
example generation and concept reformulation in those students who had
not already employed these learning strategies.

Instructions. Please answer the following questions.

1. Give an example of a fine function and explain why it is a fine function.
2. Give an example of a function which is not fine and explain why it is not fine.
3. In your own words and/or pictures, explain what a fine function is.

The next page was a verification page which provided functions for the
student to determine if they satisfied the definition of fine function.

Instructions. Determine with explanation, which of the following functions are fine.

1. f(z) = sin(rz)
2. fl&) =2 -2

3. fm) =0
0 if z is rational
4. fle)= { 1 if z is irrational

.5. f(a:) :Itan (%a,)
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=10

-15}

Figure 1.

The conjecture page required the students to determine the validity of the
following four statements about fine functions, each of which is false. We
were interested in the extent to which students engaged in concept usage
by either finding a proof or exhibiting a counterexample.

Instructions. Determine, with explanation, which of the following conjectures are true.

1. No polynomial is a fine function.

2. All trigonometric functions are fine.

3. All fine functions are periodic.

4. The product of a fine function and any other function is a fine function.

Finally, the last page consisted of a single question to survey student
perceptions of the interview and how it compared with their usual approach
to learning a new concept.

Instructions. Please answer the following question.

How did this learning experience compare with your approach to learning new concepts in
upper-level, undergraduate mathematics courses?

3. RESULTS
3.1. Initial Strategies and Learning Events

We found four basic learning strategies being used by students when pre-
sented with the concept definition: example generation, reformulation,
decomposition and synthesis, and memorization. In general, the initial
sophistication of the evoked concept image of fine function was highest
among the example generators and decreased with each successive strategy
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Ann, Andy, Chad, and Dan all attempted to generate examples that illus-
trate the concept. Ann and Andy exhibited similar learning events starting
with a graph of the constant zero function and moving to a sinusoidal
graph with integer z-intercepts. Their evoked concept image of fine func-
tion is the most well-developed consisting of graphs of continuous periodic
functions with integer z-intercepts. Dan started to exhibit a similar set of
learning events by starting with a graph of the constant zero function and a
Cartesian coordinate system with integer z-intercepts shaded, but he then
states that a fine function must be of infinite degree. The graphs are not
recognized as examples of fine functions but only as a technique of pos-
sibly generating an example necessarily expressed as a formula. Chad’s
initial evoked concept image of a fine function was a nonconstant poly-
nomial with integer coefficients. He interpreted the phrase “root(zero) at
each integer” to mean that each integer coefficient in the polynomial must
have an « associated with it. For example, he worked with expressions like
32 — 3z which satisfied his interpretation of root, but didn’t realize that
this was an example of a fine function and hence this was not a learning
event for him.

Art and Beth obtained a (symbolic) reformulation: f(n) = 0Vn € Z
and f(—=1) =0, f(0) =0, f(1) =0, f(2) =0,..., respectively. Brenda
began with a (verbal) reformulation in terms of factoring and then attempted
to generate examples. These students obtained learning events limited to
algorithmic procedures for checking whether a given function was fine and
did not spent much time on the definition page.

Betty and Carl, by underlining parts of the definition and asking about
the meaning of root, showed evidence of using decomposition and syn-
thesis: the process of “breaking down” a concept into its constituent parts,
examining the meaning of each of these parts, and finally recombining.
An example supplied by the interviewer prompted Betty to give a verbal
reformulation.

Carol and Don simply read the definition but did not write on the defini-
tion page. They remarked that they often use rote memorization in learning
a concept. Studies have shown that students perceive memorization as a
major component of mathematics learning (Spangler, 1992). These stu-
dents did not exhibit learning events exclusively stimulated by the concept
definition. They did not complete the generation page without interviewer
intervention, and were the ones who most often misinterpreted the mean-
ing of the definition. They found the interview to be structured differently
from their normal learning process which included an initial examination
of externally provided examples and/or explanations.
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3.2. Effect of Suggesting Learning Strategies

The generation page asked students to employ example generation and
reformulation learning strategies. These questions did not prompt learning
events in students with an already well developed understanding (e.g.
Ann) nor in students who required explanation from others (e.g. Don).
The questions on the generation page appear to be most effective when
suggesting a change from one of the example generation or reformulation
strategies to the other. Art, Brenda and Andy provide illustrations.

Art began as a reformulator and remarked that his symbolic reformu-
lation was the first idea that occurred to him. When asked for an example
(#1 on the generation page), he had his most significant learning event:
graphing what appeared to be y = sin(nz) and shortly afterward giving
a verbal description of a graphical example which was continuous and
non-periodic (“Because anything that goes up some place on any side, I
mean the amplitude can be quite extreme, but it has to come back to the
x-axis”).

Brenda was an example generator for much of the interview. She had
offered f(z) = z — z as an example of a fine function for #1 on the
generation page but was unsure and crossed out her expression. After going
through a socratic question and answer period with the interviewer, she
agreed with the interviewer that her example was fine, but she immediately
changed her focus writing down the expression f(z) = (z — 21)(z —
2)(z — 23) 21, 22,23 € Z and describing the concept of fine function in
terms of an “infinite factorization” of the function where the factors are of
the form z — z for all integers z. However, Brenda was not sure about the
concept of infinite products, so she worked with finite products attempting,
in essence, to “factor” her original example z — z. After a period of trial
and error, she gave up her effort at factoring the zero polynomial. At this
point, Brenda’s understanding was adequate to give f(z) = z* — 4 as an
example of a functions that was not fine.

Brenda obtained her most significant learning events when forced to
reformulate (#3 on the generation page). In response to the interviewer
asking for a picture, Brenda drew an zy-coordinate system with the z-
axis shaded: “What I'm thinking, I’'m not sure if it’s right, but if it has a
root at every integer, then it would just be like the z-axis when graphed.
Am I thinking right?” Brenda was still uncertain and stated several verbal
reformulations of the concept definition partially prompted by interviewer
questions. She finally states, “So the zero function would work because
it obviously has a root at each integer, and you’re disregarding whatever
happens at any other real number besides the integers”. Although Brenda
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an example of a fine function, she was not convinced until after making
these pictorial and verbal reformulations. A short while later she exhibited
another learning event:

Or it could be like the x-axis or what comes into my mind is something like the Dirichlet
function, maybe real erratic with, with the [. . . ] integers, say negative four, negative three,
negative two, negative one, zero, one, two, three, four, five, six, all other roots it doesn’t
matter [. . . ] if it was the sine function or just all up or down as long as it was a function. We
are not really concerned what happens here (pointing to the spaces in between the integer
marks on the z-axis).

Brenda then drew a sinusoidal curve connecting the integer intercepts.

An example generator on the definition page, Andy first answered #3
on the generation page: “A function is fine if it crosses the z-axis at every
integer”. He had previously drawn a sinusoidal function on the definition
page, but now he drew coordinate axes with dots on the horizontal axis
integers. He appeared to have a revelation, added a new (discontinuous)
fine function example (f (z) = 0if z is an integer and f(z) = 1 otherwise)
and graphed the example.

For Art, Brenda, and Andy, the questions on the generation page sug-
gested changes from one strategy to the other resulting in a shift towards a
graphical representation of function which then facilitated the generation
of examples and consequently of learning events. For some students, the
questions on the generation page had little effect in moving them towards a
visual approach to finding an example. Dan’s example of a fine function is
the expression f(z) = 0-z with the explanation “because for any integer x
f(z) = 0”. He also gave a correct counterexample (quadratic polynomial)
and answered #3 by writing “A fine function is a function f(z) such that,
any integer z yields the result f(z) = 0”. On the other hand, Beth spent a
long time in silence considering question #1 on the generation page. When
asked what she had been thinking, Beth replied “I'm thinking that it [an
example] has to be some function where when you plug in any integer, the
function is going to equal zero”. When the interviewer suggested that she
skip to #2 and #3, Beth provided f(z) = z as an example of a function
that is not fine and gave a reformulation in writing similar to her reply
above. After some more thought, she exhibited a learning event by writing
for question 1: “f(z) = 0 for any integer, the function will always equal
zero”. She was not confident in her answers and remarked “I don’t know
if I have the definition right at the beginning”.

What did students do when they couldn’t find an example? In some
cases, students changed the meaning of a concept. Both Carl and Betty’s
initial evoked concept image of function was that of polynomial functions
which they realized have only a finite number of roots. Unable to obtain
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mean that a fine function must vanish at each integer in its domain which
may not include all integers. However, after receiving clarification from
the interviewer of root and zero and reflecting on the definition, they
realized that this interpretation was not correct, and eventually shifted from
a formula interpretation to a graphical view of function at which point they
exhibited learning events by providing the z-axis (zero function) as an
example of a fine function.

Carol displayed how long the changed meaning can last when there is
no intervention to stop the development of incorrect concept images. Carol
initially wrote f(z) = 2 + 2z + 1 as an example of a fine function. After
factoring this expression, she used it as a non-example because “This only
has aroot at one integer, —1”. She then wrote y = z as an example because
“This has aroot at each integer z”. On question 3 of the generation page she
graphed y = z and wrote “I think that this means a function for which there
will always be a root, no matter which integer we focus on”. Carol’s concept
of root seemed to be changing from the notion of factoring to something
else. The something else became clearer on the verification page where she
had to determine whether functions are fine or not. She determined that
functions 1, 2 and 6 on the verification page were fine because they were
“continuous everywhere” and so had “a root at each integer”. Functions 4
and 5 were not fine because “it wasn’t continuous everywhere” and ‘it’s
only defined at here and here” (pointing at the continuous sections of a
graph of the tangent function), respectively. Her answer that function 3 was
not fine may at first seem to be inconsistent, but Carol explained, “When I
thought zero, ... T just thought of a point”, and so f(z) = 0 was viewed
as a point which did not match her image of a continuous function.

3.3. Effect of Evoked Base Concept Images

We have seen that a variety of concept images are evoked for the func-
tion and root base concepts, and incomplete or incorrect concept images
have significant effects upon student understanding of the fine concept. We
have already described how Carol’s identification of “root” with “continu-
ity” resulted in her long misunderstanding of fine functions. An incorrect
evoked image shared by three students involved thinking of the graph of
the zero function as a point rather than a horizontal line. Because of this
incorrect image, Carol and Don had difficulty understanding that the zero
function is fine, and Beth believed that the zero function is not periodic.
Most students’ initially evoked concept image of a function was a (non-
constant) polynomial. This is consistent with findings that even teachers
of mathematics have a tendency to think only in terms of continuous
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consider discontinuous functions (Hitt, 1994). In general, students have a
strong tendency to think algebraically rather than visually even in situations
where they are pushed towards visual processing (Eisenberg and Dreyfus:
p. 29). Without an expansion in this limited evoked concept image of
a function, it is impossible to find an example of a fine function. One
expansion occurred with the transcription of notation. Note how Brenda
early on writes down f(z) = z — x. Carl does the same and Dan writes
f(z) = 0-z.It takes them a while to realize that this notation represents the
constant function 0. Another potential expansion is the idea of an infinite
product of factors expressed by Dan and Brenda, but this is related to their
evoked concept image of function as polynomial function and does not
result in any viable examples.

The most significant expansion in the evoked concept image of function,
in terms of being associated with learning events, is the use of visualization
in the sense of Zimmermann and Cunningham (1991: p. 3): “Mathematical
visualization is the process of forming images (mentally, or with pencil
and paper, or with the aid of technology) and using such images effectively
for mathematical discovery and understanding”. No student was able to
obtain an example of a fine function other than the zero function until
they evoked a graphical image of the function concept. Ann and Andy
immediately obtained graphical images of functions during the definition
page. Art, Brenda, Betty, and Carol were prompted to use a graphical
image by #3 on the generation page. The remaining students did not use a
graphical image of function until the verification page. These students did
not generate examples of fine functions and were reluctant to engage in
example generation or reflection later on when working on the conjecture

page.

3.4. Role of Examples

The generation of and reflection on examples provided powerful stimuli

for eliciting learning events. We illustrate with Betty, Ann, Dan, and Don.
Betty, whose initial strategy had been reformulation, had great difficulty

obtaining an example on the generation page. She eventually produced the

zero function and graphed it on a coordinate axis. After some reflection,

she exhibited another learning event:

So it [the graph of a fine function] probably could even be a graph with holes in it. It doesn’t

matter what the rest of the graph looks like in between the integers as long as at the integers,
it’s equal to zero.

Betty remarked that she didn’t know how to produce a formula to describe
such a function, but when prompted for a picture, she drew a coordinate
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“[...] it could even be a sine function in between as long as at every
integer it would equal zero”. On the conjecture page, she connected with
this learning event and provided another by producing the product of = and
the Dirichlet function as a counterexample to conjecture 3. Only students
who had obtained graphical examples of fine functions were able to obtain
a counterexample to conjecture 3 even though symbolic counterexamples
are easily given (e.g., f(z) = z sin(7z)).

In Section 3.1, we described Ann’s rapid succession of learning events
and well-developed evoked concept image developed through example
generation. Ann moved rapidly and correctly through the generation and
verification pages. She provided an abstract pictorial reformulation of the
fine function concept that shows an awareness of domain considerations,
but she stated that she was “uneasy” because “I’m not real sure that I
understand this coordinate picture (referring to a drawn set of coordinate
axes)”. On the conjecture page, Ann exhibited several learning events.
She quickly gave the zero function as a counterexample to conjecture 1.
When asked by the interviewer whether the modified conjecture No non-
zero polynomial function is a fine function is true or false, Ann answered
correctly with a correct argument based on the degree of the polynomial.
She correctly showed that conjecture 2 was false by generating her own
counterexample: sin(z). In considering conjecture 3, Ann stated that at
the beginning of the interview, she believed that this statement was true,
but now she is uncertain. After glancing back at the verification page, she
offered the Dirichlet-type function (#4) as a counterexample. When asked
to explain the non-periodicity of this function, she quickly thought through
the example and convinced herself that this function actually was periodic.

Ann: Yea, it’s true. I guess that’s where my confusion comes in because that’s one of
the first things I thought (on the definition page), and I couldn’t think of one (fine
function) that wouldn’t be periodic. Perhaps there is one, and that’s why I’m not sure.

I: How would you try to come up with an example that wasn’t periodic?

Ann: I guess that’s when I was starting to think about discontinuous functions . .. where I
could just say f of x equals zero if « is an integer, and f of « equals whatever. Let’s
see, yeah, equals z for z a real number that is not an integer (starts drawing axes
and the graph of the defined function) that would do it because you would have your
zeros here, here, and here. And then you would basically have this line with breaks.
It is then periodically zero and then you have this thing happening (pointing to the
line).

I: All fine functions are periodic. Are you saying that this is true or false?

Ann: All continuous fine functions are probably periodic. Probably (chuckle).

I. Oh, okay. You are saying that if it is discontinuous, then..
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I: What is it about the continuity that is making you think that the statement would then
be true?

Ann: Well, I guess not. Looking at the ... I could just as well keep having the amplitudes
in different directions or having them this way, doubled this way.

I: Okay.

Ann: It’s good to have an expression, but. So maybe not.

I So maybe not. Are you comfortable with that answer now? You were just examining
the conjecture “all continuous fine functions are periodic”, and you are thinking that
is false now, or is that true?

Ann: (with an expression of resignation) Yeah, I’m thinking that’s false now.

By first considering a discontinuous periodic fine function (Dirichlet),
then varying it (essentially multiplying by ) to produce a discontinuous
non-periodic fine function, Ann saw that a continuous non-periodic fine
function may exist (she described something like 2 sin(7z)). However, this
required some effort on her part to overcome the dissonance between her
initial evoked concept image of fine function as a periodic function and her
visualization of a counterexample. She was also uneasy about her example
because she did not have a formula for it. This sequence of interchanges
illustrates several of Ann’s learning events and example usage in generating
and modifying examples to ultimately produce a counterexample to the
statement. More importantly, it shows how example generation allowed
her to change her concept image of fine function.

In some cases, students made little progress until they were presented
with the candidate functions on the verification page. These functions
appear to have evoked parts of the students’ concept image of function that
had previously been untapped. Upon seeing the sine function example (#1),
Dan stated “I’m seeing the sinusoidal graph, or how I remember it, in my
mind”. He required a calculator to check his impressions but then stated,
“I see a broader range of fine function than I used to” and remarked that
the zero function was the only example he could think of prior to seeing
the verification page. On the verification page, Don, who had previously
not been able to produce a single example of a fine function, was able
to quickly and correctly determine which of the candidate functions were
fine. However, on the conjecture page he only answered #1 and #2 with
conviction, using counterexamples from the verification page. With the
other conjectures he was not able to make much use of the examples and
was even reluctant to consider examples when suggested by the interviewer.

Students who consistently employed example generation (Ann, Andy,
Betty and Brenda) had more learning events, were able to encapsulate more
examples into their concept image of fine function, and were more able to
use these examples than those who primarily used other learning strategies.
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the definition page during the interview, and Beth was reluctant to consider
examples after giving a faulty argument for conjecture 4. On the generation
page, Art switched to an example generation mode, exhibited a learning
event by graphing y = sin(nz) and even described a graphical example
which was continuous and non-periodic (similar to z sin(wz)). However,
Art did not consider this example at all when attempting to find a coun-
terexample to conjecture 3, and instead referred to the Dirichlet function
(#4) provided on the verification page (which is not a counterexample).

3.5. Persistence of Initial Learning Events

In some of the interviews, we observed that students’ initial learning events
dominated how they viewed the fine function concept. An illustration of
this persistence is Ann’s initial evoked concept image of fine function as a
periodic function which caused her some conflict later when considering
whether a fine function must be periodic (see Section 3.4). Another illus-
tration was Beth’s resistance to inspecting examples after deciding that
conjecture 4 was true and giving a proof based on her initial reformulation
of the definition in terms of function evaluation. Carol’s evoked concept
image of fine function as a continuous function was very persistent, lasting
from the definition page through the verification pages, and required much
intervention by the interviewer to effect a new learning event.

Chad’s initial evoked concept image of fine function as the zero function
causes him some conflict when considering #6 on the verification page.
In spite of the extensive interviewer prompting given in response to his
difficulty in understanding the sine and Dirichlet functions, and although
he eventually “agrees” after some interviewer prompting that the graphical
presentation for #6 is fine, these experiences make little impression on
him. When working on the conjecture page, he was stymied when he could
not produce an example of a fine function other than the zero function and
hence, even though he answered yes for #6, no learning event occurred
since he was not able to use this example on later questions. In fact, even
at the end of the interview Chad was still uncertain of his understanding of
fine function and remarked “There aren’t too many fine functions in this
world. Just being able to come up with one off the top of your head is very
difficult”.

During the interviews we were struck by the relative ineffectualness of
instructor intervention. Some learning events did occur after interviewer
prompting, but we were surprised to find how little an effect this activity
had in stimulating student learning events. For example, Brenda offered
f(z) = z — z as an example of a fine function but was unsure and
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answer period with the interviewer, she agreed that her example was fine,
but immediately changed her focus. The interviewer led Brenda to an
agreement that the zero function was a fine function yet Brenda imme-
diately moved onto other ideas, and it was not until much later, through
self-discovery, that Brenda realized that the zero function really was an
example of a fine function. In the case of Don, extensive prompting pro-
duced little understanding although it did keep him focused on the task and
perhaps led to understanding later when he encountered the verification
page. Of course, Carol would have never corrected her erroneous notion of
fine meaning continuous during the interview without intervention by the
interviewer. In summary, interviewer prompting was most effective when
students were completely lost or when students were having difficulty
articulating a learning event.

4. CONCLUSIONS

When do learning events occur? Based upon our interviews, we found
that student concept usage through generating, verifying and reflecting
on examples either stimulated or were associated with learning events.
Students who initially employed the example generation strategy learned a
significant amount having only been given the concept definition. In gener-
al, those students who engaged in example generation and reflection during
the interview were able to attain a more complete understanding of the fine
function concept. These students were able to incorporate a greater variety
of functions (discontinuous, periodic continuous, non-periodic continuous,
etc.) into their concept image of fine function and were able to use these
examples in their explanations.

Students who primarily employed memorization or decomposition and
synthesis as their learning strategy most often misinterpreted the definition
and either did not complete the conjecture page or gave answers (usually
guesses) but with little or no explanation to support their answers. Students
who primarily employed reformulation as their learning strategy developed
algorithms to quickly verify whether candidate function were fine; how-
ever, they had difficulty identifying counterexamples to conjectures even
when the counterexample existed on the verification page. Students who
primarily employed example generation were best able to identify the
correctness of conjectures and provide explanations. It may be that refor-
mulation plays a more important role in the construction of proofs (see
Moore (1994) and Selden and Selden (1995)).

Our findings suggest that it may be beneficial to introduce students to
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them verify and work with instances of a concept before providing them
with examples and commentary. The students in our study who were able
to move freely between reformulation and example generation were most
likely to be successful in understanding the fine function concept. Some
students were reluctant or unwilling to engage in example generation,
or more generally, example usage. These students were unsure of their
answers and repeatedly sought confirmation from the interviewers. Perhaps
engaging students in example usage activities while introducing students to
new concepts can promote this strategy and encourage students to consider
more carefully the meaning of definitions. However, questions given to
students need to be thought through carefully because of the persistence
of the student’s sometimes erroneous initial concept image and the non-
persistence of instructor intervention.

Finally, we view the structure of the interview as a useful methodolog-
ical approach in evoking aspects of a student’s concept image as well as
eliciting learning events. The essential difference between what 1s usually
done in textbook presentations and what was done in the interviews is the
extent of the student-provided validation. In the usual textbook presenta-
tions, examples and counterexamples are presented and explained whereas
in our study students were required to decide whether a candidate was an
example without autoritative confirmation by an outside source. Utilizing
the structure of our interview in presenting new concepts in the class-
room may be a useful pedagogical tool, but further research is needed to
determine if this method of presentation is effective and efficient.

MOTES

! The authors would like to thank the referees for their many helpful suggestions.

2 In the U.S., students at the undergraduate level typically take courses in a particular
subject area such as mathematics which constitute approximately one-third of their
course work over four years. This course-work develops the subject in some depth
and is referred to as the student’s major. A third-year (respectively, fourth-year)
undergraduate student is referred to as a junior (respectively, a senior).
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