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Enumeration of hamiltonian paths in Cayley diagrams

DaviD HousMAN

Abstract. Let G be a group generated by a subset of elements S. The Cayley diagram of G given S is
the labeled directed graph with vertices identified with the elements of G and (v, u) is an edge labeled
h if he S and uh =v. The sequence of elements of S corresponding to the edges transversed in a
hamiltonian path (whose initial vertex is the identity) is called a group generating sequence (ab-
breviated ggs) in S.

In this paper a minimal upper bound for the number of ggs’s in a pair of generator elements for
any two-generated group is given. For all groups of the form G =(a,b: b"=1, a™ =b", ba=ab~1)
where m is even, it is shown that the number of ggs’s in {a, b} is 1+m(n—1)/2. An algorithm is
developed that yields the number of ggs’s for two-generated groups G ={a, b) for which (ba~1)<G.
Explicit forms for the counted ggs’s are also provided.

1. Introduction

Let G be a group generated by a subset of elements S. The Cayley diagram of
G given S, denoted Dg(G), is the labeled directed graph with vertices identified
with the elements of G and (v, u) an edge labeled h if he S and uh=v.

The existence of hamiltonian paths and circuits in Cayley diagrams has been
studied by several authors. Rankin [11, 12] has provided some sufficient and
necessary conditions on the group and generating set. Holsztynski and Nathanson
[see 4] showed that there exists a hamiltonian path in every Cayley diagram of an
abelian or hamiltonian group or a group whose order is no more than 15. Witte
[14] proved the same for groups having a cyclic subgroup of index 2. However,
there are Cayley diagrams having no hamiltonian path. Nijenhuis and Wilf [10,
pp. 288-289] gave the example of the symmetric group on five letters given the
generating set {(1 2), (1 2 3 4 5)}. According to Nathanson [9], Milnor con-
structed a solvable group having no hamiltonian path.

Necessary and sufficient conditions for a hamiltonian circuit to exist in a
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Cayley diagram of a cyclic group were found by Holsztynski and Strube [4]. The
same were found by Trotter and Erdos [13] for the Cayley diagram generated by
(0, 1) and (1, 0) of the Cartesian product of any two cyclic groups. Klerlein and
Starling [7] have generalized some of these results for semi-direct products of two
cyclic groups. Witte [14] has shown that a hamiltonian circuit exists in every
Cayley diagram of abelian p-groups, metacyclic p-groups, any p-group whose
order is no more than p*, and dihedral groups of order 2n when n is divisible by
at most three distinct primes. Witte, Letzter and Gallian [15] and Letzter [8]
found hamiltonian circuits for Cartesian products of a variety of Cayley diagrams.
Keating [5] did the same for the conjunctive product. Curran [1] has begun to
investigate Cartesian products of three cyclic groups.

Another question of interest is the following. Which Cayley diagrams defined
by a minimal generating set have hamiltonian circuits? Klerlein [6] has answered
this question in the affirmative for finite abelian groups, dihedral groups, and
groups whose order is less than 16. Rankin [12] showed the same for any group
with a two element generating set in which one of the elements is of order 2.
Witte [14] has placed an upper bound on the cardinality of the smallest generating
set of a group that yields a Cayley graph with a hamiltonian circuit.

The enumeration of hamiltonian paths and circuits has also been done.
Nathanson [9] has shown that Dg(G) has exactly |G|! hamiltonian paths regard-
less of G. Gallian and Marttila [3] found the number of hamiltonian paths in
Cayley diagrams of dihedral groups for various generating sets. This paper treats a
class of groups that includes the dihedral and generalized quaternion groups.
Gallian [2] also presented a variation of the problem in conjunction with an
application to letter sorting. For all groups G = {a, b in which (ba ') <A G, Rankin
[11] found the number of hamiltonian circuits. This paper determines the number
of hamiltonian paths in Rankin’s groups.

2. The general case
Let G be a finite group generated by a subset of elements S, and denote the

order 6f G by N. Let y, denote the i-th vertex of a hamiltonian path. The
enumeration of hamiltonian paths in Dg(G) can be simplified by considering only

hamiltonian paths whose initial vertex is the identity. Indeed, if vo, Y1, ... » Yn—-1 1S
a hamiltonian path in Ds(G), then 1, y5'y1, Yo Y25 - - -5 Yo lyn—1 is also a hamilto-
nian path in Ds(G). Conversely, if 1, yi, ¥2,..., ¥n-1 is a hamiltonian path in

Ds(G), then y, yy1, Y¥2, ..., YYn-1 is also a hamiltonian path in Ds(G) for each
y € G. Hence, the number of hamiltonian paths is simply the product of the order
‘of G and the number of hamiltonian paths whose initial vertex is the identity.
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The sequence X, X, ..., Xy—; Of elements of S is called a group generating
sequence, abbreviated ggs, if the partial products of the sequence
1, X1, X1Xp, . - - » X1Xp * * * Xny—1 are distinct and hence contain every element of G.
Clearly the paf_tial products y, =X;X;*** % and the x; can be identified as the
vertices and edges transversed, respectively, of a hamiltonian path
Yo V1, - - - » Y1 in Ds(G) whose initial vertex is the identity (yo=1). If this
hamiltonian path is also a circuit, then the ggs is said to be cyclic. Thus, the
enumeration of hamiltonian paths and circuits is equivalent to the enumeration of
ggs and cyclic ggs, respectively. (But note that, while each ggs determines N
distinct hamiltonian paths, the N hamiltonian circuits determined by a cyclic ggs
are all the same circuit with different “initial” vertices.)

Only two-generated groups will be considered in this paper. So, let G =(S)
and S={a, b}. Again let N be the order of G and x; and y; be the i-th element
and i-th partial product (i.e., yi=x1xz"*" x,), respectively, of a ggs. A partial
product y; of a ggs is said to travel by a (resp., by b) if x,,,=a (resp., ;.1 =b).
The (N —1)-st partial product of a ggs (i.e., yn-1) is called the whole product of
the ggs. The left cosets of (ba™") are called outbound cosets. If C is an outbound
coset, then a~'e C if and only if b™'e C. The unique outbound coset containing
both a-! and b~ is called special; all other outbound cosets are called regular.
The motivation for considering these cosets will become apparent in the following
proposition.

PROPOSITION. Let C be an outbound coset which does not contain the whole
product of some ggs. Let y;, y; be partial products of this ggs. If yi, ¥, € C, then y;
travels by a if and only if y; travels by a.

Proof. We need to show that x;.,=a if and only if x;.,=a. If x;.; =a, then
yis1 = yia. Let y, = y,ab™". There must be a (p+1)-st element in the ggs since y, is
contained in the same outbound coset as y;, and this outbound coset does not
contain the whole product. If x,.,=>b, then y,.;1= yi(ab™1)b = y;a which cannot
occur since a ggs has distinct partial products. Thus, x,=a. Now let y, =
y.(ab~V)k. If the partial product y;(ab™")*"" travels by a, by the same argument as
used before, x, ., = a. Thus, x;,; = a. Since the argument is symmetric in i and j,
the converse also follows.

COROLLARY. The whole product of a ggs must be an element of the special
outbound coset.

Proof. Suppose the special outbound coset does not contain the whole pro-
duct. By the Proposition its elements travel either entirely by a or entirely by b.
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In either case, 1=a 'a=>b""b is a partial product. This contradiction establishes
the Corollary.

These two results allow us to apply the term “travels by’ to regular outbound
cosets, that is, a regular outbound coset C is said to travel by a in some ggs if
some partial product y; € C travels by a. This makes it feasible for a computer to
generate a large number of examples since one does not have to check all 2N
possible sequences for a group of order N.

THEOREM 1. Let G ={a, b), s=|ba~"|, and t=|G|/s. Then the number of
ggs’s of G is at most [(s+1)/2]12""", where [ ] is the greatest integer function.

Proof. In view of the Proposition and the above remark, a ggs is completely
determined once we know (1) the element by which each regular outbound coset
travels and (2) the integer w (0=w=s—1) such that the whole product is
a~Y(ba~")*. Since there are at most 2+-1 possibilities for the elements in (1), and s
possibilities for w, there can be at most 2" 's ggs’s. To improve this estimate, we
assert that once the elements in (1) have been chosen, no two consecutive values
of w in (2) can both give rise to ggs’s. Indeed, suppose that both u=a"'(ba™")"
and v=a"'(ba")**! were whole products of ggs’s (with the same choice of
the elements in (1)). In these ggs’s all elements except u and v travel the same
way. This means that each ggs is an initial segment of the other, which is absurd.
Now since the maximum number of non-consecutive integers in the interval
[0, s — 1] is [(s + 1)/2], it follows that the number of ggs’s is at most [(s + 12121

Theorem 1 cannot be improved for two-generated groups in general as the
following example shows; however, other than the quaternion group of order 8
(see Theorem 3), the author knows of no two-generated non-abelian groups or
groups with |ba™*|>2 for which the number of ggs’s equals the maximum
allowable by Theorem 1. Witte, in a private communication, has been able to
obtain very restrictive conditions upon the groups that attain the maximum. So, it
may be possible to strengthen the theorem for the “majority” of two-generated
groups.

EXAMPLE. G =(a, b:b"=1,a*=b? ba =ab) where n is even. For G,
|ba~|=2 and G=2n, so by Theorem 1 there are no more than 2"7' ggs’s.
Consider all sequences of the form Xq, Xz,...,X2n-1 where x;=x,.; for i=

1,2,...,n—1. Since y1= a-! or b~!, eliminate from consideration those sequ-
ences for which y, =1. Thf, remaining 2"~ sequences are ggs’s because 1#y, =
X1%; " * * X, which implies that XX, * * * % F X1X2* ** Xpi fori=0,1,...,n—1and

XXt % F XX if |j—il=n, and so the partial products are distinct.
Therefore, G has exactly 271 ggs’s.
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3. Metacycdlic groups

A group G is called metacyclic if it has a cyclic normal subgroup B such that
G/B is cyclic. Let b generate B and a € G/B so that G =(a, b). Before enumerat-
ing ggs’s (in a and b) of special classes of metacyclic groups, we develop a suitable
characterization of all metacyclic groups.

Let the order of b be n. Since (b) <G, there exists a smallest positive integer
h <n such that

ba = ab*. ¢V
By induction

bial = a'b™, (2)

Every product of powers of a and b may be reduced to the form a'b’ by repeated
application of (2). If m =|G/|/n, then

am™=b" 3)
for some positive integer r=<n, and no power of a less than m is equal to any
power of b (for otherwise the number of elements in the group would be less than
mn =|GY). So, each element of G can be uniquely expressed in the form a'b’ with
0=<i<m and 0=j<n. Since |b|=n, (2) implies that

(h,n)=1. (4)
With i=m and j=1 in (2), equ. (3) implies that

h™ =1 (mod n). (%)
With i=1 and j=r in (2), equ. (3) implies that

r(h—1)=0 (mod n). (6)
Conversely, given positive integers n, m,r=n, and h <n satisfying (4)-(6),

G(n,m,r,h)={a,b: b"=1,a™ =b", ba = ab") 7

defines a metacyclic group of order mn. Indeed, (4) ensures that |b|=n, (5) and
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(6) ensure associativity, and the remaining group axioms are trivially true. Of
course, G(n, m,r,h)=G(n',m’, r, h') can occur with some of the unprimed and
primed quantities not identical; however, in addition to the particular group under
consideration, we are also interested in the particular generating set, that is, the
Cayley diagram is the relevant object to consider. Two Cayley diagrams Dy (G)
and Dr(H) are isomorphic if and only if there is a group isomorphism f:G—>H
such that f(S)=T. In the case at hand, it can be shown that the Cayley diagrams
of G(n,m,r, h) and G(n', m’, r', k') are isomorphic if and only if one of the
following holds:

(D) (n,m,r,h)=(n',m’, v, 1), or

2 m=r
r=m'
mn=m'n'

m(h—1)+m'(h'~1)=0 (mod mn).

An example is G(12,2,6,7) and G(4,6,2,3). If one is concerned only with the
number of ggs’s and cyclic ggs’s but not in their form, the relevant isomorphism
class is all isomorphic unlabeled Cayley diagrams. For example, the groups
G(8,1,3,1) and G(4, 2,2, 3) nor their Cayley diagrams are isomorphic; however,
their unlabeled Cayley diagrams are isomorphic and so both have the same
number of ggs’s (4) and cyclic ggs’s (2).

m-—1
A

PROPOSITION. The sequence ?), vvos Dy Bsaiay by .. ,R, b,...,bisaggsfor
———— \_..\_,-.__J N ——

n-1 n-—
every metacyclic group G =(a, b), where (b)Y« G. 1

Proof. The k-th segment of the form b,...b,a has partial products of the
form a*~'b’, for j=0,1,...,n-1 (not necessarily in that order), and so are
distinct. Since no power of a less than m is equal to any power of b, all partial
products are distinct.

So, every metacyclic group' G ={a, b), where (b)<IG has a g¢s in a and b;
however, the same cannot be said for cyclic ggs’s for it can be shown that
G(12,2,10,7) and G(12, 2, 12, 7) have no cyclic ggs’s as shown in Table 1. Table
1 gives the number of ggs’s and cyclic ggs’s in a and b for all non-abelian
metacyclic groups G =(a, b), where (b)<<G and G has order 24. The author
knows of no general algorithm for calculating the ggs’s of metacyclic groups other
than the one implied by the proof of Theorem 1; however, as noted in Table 1,
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Table 1
The number of ggs’s and cyclic ggs’s in a and b for all non-abelian
metacyclic groups G of order 24 as characterized by equation .
The last column gives the theorem(s) used in each enumeration. The
Cayley diagrams of G(12,2,6,7) and G(4, 6,2, 3) form the unique
pair of groups listed whose Cayley diagrams, labeled or unlabeled,
are isomorphic. :

n m r h ggs’s cggs’s  Theorem used
12 2 2 7 52 32 5
3 5 12 3 1
4 7 10 4 1
6 5 600 600 1
7 10 2 5
11 12 6 3,1
8 7 1024 1024 1
9 5 11 3 1
10 7 8 0 5
12 5 9 6 1
7 4 0 1
11 12 12 2,1
6 4 3 5 11 3 3,1
6 5 11 6 2,1
4 6 2 3 10 2 3,1
4 3 10 4 2,1
3 8 3 2 9 3 2,1

the enumeration can be simplified in certain special cases. We consider these in
the final two sections.

4. A special class of metacyclic groups

In this section we shall deal with metacyclic groups for which h=n—1 (see
definition (7) in Section 3). Equation (5) of the previous section implies that m
must be even unless n = 2. Equation (6) of the previous section implies that n [2r
and since r=n, we have n =r or 2r. These groups turn out to be a generalization
of two familiar classes of groups: the dihedral (n=r and m=2) and the
generalized quaternions (n =2r and m =2). For this class of groups it turns out to
be more useful to write elements in the form b'a’ where 0<i<n and 0=j<m.
The Cayley diagram for these groups is given in Figure 1. It will be helpful to the
reader to keep this figure in mind while working through the proofs that follow.

If x; and x; are elements of a ggs and i<k =<j implies that x;, = a if and only if
k =i or j, then x; and x; are said to be consecutive a’s and X;.1, Xis2s -5 Xj—1 18
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1 a a? am-? am-! ner o n=2r

N N N :
1 0—f— 0~ — =0t —» —_—() 4+ ) — 1 b
b 0 —»(0—1—=(0— - — () b br+1
2 2 r+2
b2 Ot = 0| —=0—f—= -+ ——=Qf—>0-f—= b b
60— = 0-f —m0—f e o ——= 0 0= b7 B
bmotj»‘h’o—' ’t__» L —’()L]_"'t . bn-1 br-1

Figure 1
The Cayley diagram in {a, b} of the metacyclic group G =(a,b:b"=1, a™=b", ab=b"'a). The
horizontal and vertical directed line segments correspond to the elements a and b, respectively, of a
sequence. The vertices adjacent from b'a™ ! for i=0,1,...,n—1 depend upon whether n=r or
n =2r as indicated.

called a b-segment. The number j—i—1 (which may be zero) is called the
b-segment’s length. One b-segment immediately follows or immediately precedes
another b-segment when there is exactly one a between them; hence, in the
sequence segment a, b,..., b, a,a,b,..., b, a the two b-segments in brackets do
not immediately follow or precede each other; however, a b-segment of zero
length does immediately follow the first bracketed b-segment and immediately
precedes the second bracketed b-segment. As before, y; will denote x;x, * - * x;.

LEMMA 1. In a ggs the length of any b-segment must be at least as great as
the length of the b-segment immediately preceding it unless the product of the latter
b-segment is b™'. (See Figure 2.)

Proof. Let x;, x; and x, be three consecutive a’s in a ggs with j—i>k~—j. If
the element y,_,b is not the identity, then there must exist a partial product y,
such that y,a =y,_,b or y,b=1y,_,b. Since x, = a, the latter is not possible. If the
former were true, then y, =y, ba™ =y, (b7 Tab* 7 ba ' =yp¥ 771, But
i=2j—k—1=<j-2 so that y;b% "% already travels by b. Thus, y,_;b=1.
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0———=0Yi 0 0

0 0 ) 0

0 0 0— 0y

0 0—0y; 0
Figure 2

An impossible path by Lemma 1 since @ cannot be a partial product.

LEMMA 2. In a ggs only one b-segment can have length greater than the
length of the b-segment immediately preceding it. (See Figure 3.)

Proof. Let x, x; and x, be three consecutive a’s in a ggs with j—i<k—j.
Consider the element y, = y;b~. Now y, = y,b and y,;_; =y,b' "' 'ab’™" = ybla=
y,a. But x; = a and x5;_; =b, so y, must be the whole product. If there were two
pairs of sequences as described in the lemma, the ggs would have to have two
different whole products which is absurd.

0 ] 0—=0yj
0——=0yi 0 0
|
0 0 0 0
|
0 0——=0y; 0
Figure 3

Only one such path exists by Lemma 2 since @ must be the whole product.

THEOREM 2. Suppose G is a metacyclic group with h=n—1, n=r, and m
even. Then G has 1+m(n—1)/2 ggs’s. These ggs’s are of the form
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m-—1
| o A hY
b,...,ba,...,b,...,b,ab,...,b; or
n—1 n—1 n—1
2i—1 m—2i+
r B ~ Poa \
b,...,ba,...,b...,bab,...,ba....,b...,ba,
P p n-1 n—1
2i—2
-~ A ~
b,...,b,a, ,b,...,b a,b, ,b
n—-2—p n—2—p n—2-p

where p=0,1,...,n=2and i=1,2,..., m/2.

Proof. (In this proof and in the proof of Theorem 3, len (i) will denote the
length of the i-th b-segment, and y, will denote the u-th partial product where u
should be clear from context. For example, the first time the notation is used
below, u = (p +1)(2i)+(q+ 1)(m —2i).) After a bit of calculation or working with
Figure 1, one can ascertain that the above sequences are indeed ggs’s. To show
that these are the only ggs’s, Lemmas 1 and 2 require us to consider only the
following two cases.

CASE 1. Iflen (1) =len(2)=---=len(2i)=p=q=len (2i+1)=len 2i +2) =
...=len(m), then y,=(b"a)*(b%)"*=1; hence, mn=u=2i(p—-q)+
m(q+1)=m(q+1) which implies that n—1=gq. Since the partial pro-
ducts of a ggs are distinct, g=n—1 also holds; hence q =n—1. Substituting this
value for q in the original inequality, we obtain 0=<2i(p —n + 1) <0 which implies
that p =n—1. Therefore, the first ggs listed in the theorem is the only possible

88s.

CASE?2. Iflen(1)=len(2)=---=len(2i—-1)=p<q=len(2i)=len 2i+1)=
.++=len(m), then y,=(b%a)* (b%)™ # ' =b""% Now s=len(m+1)<q-p
for otherwise 1 would be a partial product twice, and len(m+2)=len(m+3)=
...=len(m+2i—-1)=s by Lemma 2. Now consider y,=y,(b’a)* '=
bP-a+3q2~1 where p—q=<j=<-—1. But y,, =(b"a)* 'b' =b""'a* ! where 0=t=gq
(or we can say p—q<p—t=p) are already partial products. Since the partial
products of a ggs are distinct, mn=v=Q2i-1)(p—q+s+1)+m(@+1)=m(g+1)
which implies that q=n —1, and therefore q = n — 1. Substituting this value for q
in the inequality in the last sentence, we obtain 0<p—(n—1)+s+1=0 or
s =n—2—p. Thus, only those sequences listed in the theorem are possible ggs’s.
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THEOREM 3. Suppose G is a metacyclic group with h=n—1, n=2r, and m
even. Then G has 1+m(n—1)/2 ggs’s. These ggs’s are of the form

m—1
—
b....ba....b....bab. b
n—1 n—1 n—1
2j m-—2j
ro A .Y~ ~ N
b!' ’b,a’ ,b’-'°5b)a’b:“ ,b’a, ab, ab,a9
r—1 r—-1 n—1 n—1
2j—1
e —A N
ba 9b5a’ :b,"-9b’a,b) ,b3
r—1 r—1 r—1
2i—1 2m—2i+1
r— n —
By nen g B Wy B 0l B e e s By sy D s B
p p r—-1 r—1
2i—2
lA ~ .
b,...,b,a,...,b,...,b,a,b,...,b; or
r—2—p r—2-p r—2-p
m+2i—-1 m~-2i+1
fm— N\ p— N
b,...,b,a,...,b,...,b,a,b,...,b,a,...,b...,ba
p P r—1 r—1
m+2i-2
% Al

b,...,b,a,...,b,...,b,ab,...,b
—— Sy i

r—2-p r—2—p r—2—p
where j=0,1,...,m/2—-1, p=0,1,...,r—2, and i=12,...,m/2.

Proof. After a bit of calculation or working with Figure 1, one can see that the
above sequences are indeed ggs’s. The proof to show that these sequences are the
only possible ggs’s is best approached by considering the following five cases.

CASE 1. If len(1)=--+-=len(2i)=p<g=len(2i+1)=---=len(m), then
y. = (ba)* (b%)™ "% =b". If p=r, then mn=u=2i(p—q)+m(q+1)<m(qg+1)
which implies that g>n — 1. But then the partial products of the sequence would
not all be distinct, so p<r. If g<r, then let len(m+1)="--=len(2m)=s. This
implies that s<r and y,=y,(b*a)"=1. So, v= 2Qip—q)+(@+s+2)m<
—1+(q+s+2)m=<nm—1; hence, some element of G is not a partial product of
the sequence, and so q=r. Let len(m+1)="---=len (m+2i)=s. This implies
that s <r and y, = y,(b°a)®* = b"a® = (ba)*b" is already a partial product; hence,
mn=v=2i(p—q+s+1)+m(q+1)=m(p+r+1). So, p=r—1. Substitution of
this value for p back in the inequality yields mn=<2i(r—q+s)+m(g+1)=
m(r+s+1), so that s=r—1 and q=n—1. Thus, the second set of ggs’s (less
when j =0) are the only possible. '



Vol. 23, 1981 Enumeration of hamiltonian paths in Cayley diagrams 91

CASE 2. If len (1)=---=len (Qi—1)=p=q=len (2i)=---=len (m)
and r=p<n, then y,=(b"a)* '(b%)" F* ' =b""""; hence, mn=u=
2i—-1)(p—q)+m(q+1)=m(q+1) which implies that q=n-1, and hence
q = n— 1. Substitution of this value for q in the above inequality yields 0=p—n+
1=0 or p=n—1. Thus, the first ggs listed in the theorem is the only possible
one.

CASE 3. Iflen(1)=--:=len(2i—-1)=p=q=len(2i)=---=len(m) and p=
r—1, then y, =(b%a)**(b%)™ %" =b""9*", Unless p = g, the sequence will not
have distinct partial products. Let len(m+1)=-:-=len(m+k)=s=<t=
len (m+k+1)=-+-=1len (2m). This implies that y, =y, (b*a)*(b'a)™ " =1 (if k is
even) and b"**"* (if k is odd). Either way the partial products are not distinct
unless mn<=v=k(s—t)+m(r+t+1)=m(r+t+1) which implies that t=r—1.
But for the partial products to be all distinct, t=<r—1; hence, t =r—1. Substitu-
tion of this value for t in the above inequality yields 0<s—r+1=<0or s=r—1.
Thus, the ggs in the second set listed in the theorem with j=0 is the only one
possible. '

CASE 4. Iflen(1)=--:=len(2i—1)=p<qg=len(2i)=---=len(m) and 0=
p<r—1, then vy,=(b"a)* '(b%)" H#*'=p""9""=b* where e=p—q+r if
p—q+r>0and e=p—q+r+nif p—q+r<0. Since the partial products must be
distinct, p<e<n. Let len(m+1)=---=len(2m)=s. Then y,=y,(b*a)* "=
be**a?~1'; however, the sequence already has partial products of the form
Yo+ = (b°a)* 0! =b?71a?! for 0=j=gq which implies that e+s<n+p-—gq. If
e =p—q-+r+n, then this last inequality implies that r+s <0 which is impossible;
hence, e can only equal p—q+r. Substitution of this into the inequalities p <e
and e+s<n+p-—q yields g<r and s <r, respectively.

Letlen(2m+1)=---=len(@m+2i—1)=t Then y, . = Yu(b*a)™b* = bP~a*k
implies that n+p—q+k<n for 0=k=t. Also y, =y, (b'a)* '=b""1"a* =
(bPa)* ' is a partial product already because 0=t <gq. Therefore, mn=<x =
Qi-1D(p—q+t+1)+m(q+s+2)<m(q+s+2) which implies that g+s=n-2.
To avoid repeating partial products, q +s = n —2. Substitution of this equality into
the inequality of the preceding sentence yields p—q+t+1=0. Since q<r and
s <r, we obtain that q =s =r— 1. Finally, rearrangement of p—q+t+1=0 yields
t=r—2—p. Thus, the third form of ggs listed in the theorem is the only possible
form.

CASE 5.1If len(1)=:--=len(m)=p<r—1, then y,.,=(b?a)"bd=>b""
where qg=Ilen(m+1) which implies that r+q<n or q<r. Suppose
len(m+1)=---=len(m+2i)=q=<s=len(m+2i+1)=---=len(2m). Then

Yo = yu(b%a)?(b%a)™ % =1 which implies that mn=<v=2i(q—s)+m(p+s+2);
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hence, p+s=n—2. But this is impossible since p<r—1 and s=<r—1. Thus, we
must have len(m+1)=---=len(m+2i—-1)=q<s=len(m+2i)=---=len 2m).
S0, v, = y.(b%)* '(b*a)" " '=b"* and y, , = b *""a™ " imply that r+q<q-—
s+n or s<r and p <q—s+r, respectively.

If len(2m+1)=---=len (3m)=t, then y,,; = y,b' =b*** for 0=<j=t which
implies that g—s+t+n<n. If len(3m+1)=---=len(3m+2i—1)=d, then
YVwid = Yo(b'a)™b? =ba7**"*4 but y, = b" must not be repeated so g—s+r+d<r.
Also y, =y,.(b%)* 1 =br"+dg% 1= pq? ! where q—s+r=e<r, but there
are already partial products of the form y, (b%)* b’ =b77*"a* ! where 0<j=<s
which implies that g—s+r=q—-j+r=r+q. Thus, mn=z.

Now consider the powers of b as partial products: y, =b’ for k=0,1,...,p;
w, w+l,...,w+d; u, u+1,...,u+q; v, v+1,..., 0+t with j=0,1,...,p;
q—-s+rq—s+r+1,...,q—s+r+d; r, r+1,...,r+q; ntq-s, ntq-s+
1,...,n+q—s+t Since these are the only powers of b appearing as partial
products, the following four equalities must hold: p+1=qg—s+r,
g-s+r+d+1=rr+q+1=n+q-s, and n+q—s+t+1=n. Solving these equ-
ations simultaneously, we find that p=gq, s=r—1, and t=d =r—2—p. Thus, the
fourth form of ggs listed in the theorem is the only possible form.

THEOREM 4. Suppose G is a metacyclic group with n=2. If r =2, then G has
[m/2]+1 ggs’s. If r=1, then G has [(m+1)/2]+1 ggs’s. These ggs’s are of the
form

a,...,a,b,a,...,b,a,a,...,a

m—i i+1 m—i—2

where i = m and the odd positive integers less than m if r=2 and i =0, m, and the
even positive integers less than m if r=1.

The proof is clear from the Cayley diagram of G.

5. Rankin’s groups
Let G*={(a, b) and (ba™')<G?¥*. Such groups were studied by Rankin [8],

hence the designation in this section’s title. These are metacyclic groups, so they
can be characterized in the same fashion as in Section 3:

G*(N,M,R,H)={a,b: cN =1, a™M=ck, ca = ac™), 6}
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where ¢=ba™!, is such a group if and only if there exist positive integers
N,M,R=N, and H < N such that

(H,N)=1
HM =1 (mod N)
R(H-1)=0(mod N).

Even though these are metacyclic groups, we are not considering a subclass of the
Cayley diagrams focused upon in Section 3 because (b) may not be normal in G*.
Nonetheless, these two classes of groups do overlap. G*(N, M, R, H) has the
property that a and b = ca generate a group of the form G(n, m,r, h) if and only
if (N, ¢)| H*—H where y=R+1+H+*" .+ HM™!, In this case,

m = (N, ¢)

n=M1—V—
m

v oo ) o
r=m+MK', k'a(ﬂi—'iigi)(—:’;)_l (mod %)

Again let ¢ = ba~'. Our assumption that {c) be normal in G* imposes a simple
structure upon the outbound cosets and their interrelationship. The outbound
cosets are clearly of the form ai(c) for 0si<M, ai{c)=a'(c) if and only if
i=j (mod M), and aM~Yc) is the special outbound coset. Now

aicla=a"'c™
(2)

aiclh = a\t1cU+DH,

Hence, if the partial product of a ggs yi € a'{c), then Vi1 € ai*Yc). So, the Cayley

diagram of the generators {a, b} in G* is an M-partite graph whose components
are connected in cyclical fashion, and any ggs must be of the form

S, Xns S, XoMs ++ 3 S, X(N—-1DM> S (3)

where the choice of the whole product determines X for j=1, 2,...,N—1and
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S is the subsequence Xi,X,,..:,Xy-1 Where a'(c) travels by x,, for i=
0,1,...,M-2.

We wish to determine when a sequence of the form (3) is a ggs, or equival-
ently, determine when the M-partite Cayley graph has a hamiltonian path whose
initial vertex is the identity. Since a =c% and b=c'a,

X1X2* " XpM—-1 7T aM_lc’ (4)

where
M-1
s= Y, ¢HM ' (mod N)
i=1

e_{O, ifx,=a
1, ifx=b"

Using (2) and the same argument as in the proof of Theorem 1, we see that if a‘c’
travels by a in a ggs, then a'c’™! travels by a in the ggs unless it is the whole
product. Similarly, if a‘c’ travels by b in a ggs, then a'c’*" travels by b in the ggs
unless it is the whole product. Also b™'=a™~*¢™®"'and a~' = a™ !¢ travel by
a and b, respectively, unless either is the whole product. Hence, given that the
whole product is a™~c¥, then a™ ¢’ travels by a if w+R<j+R=N-1 and
travels by b if 0=j+R < w + R, where all quantities are taken modulo N. Finally
note that (a™~'¢)(c%a) = cI+HE,

For a given special segment and whole product the M-partite Cayley graph
can now be reduced to a bipartite graph with N vertices in each component. If the
vertices in each component are labeled from 0 to N —1 consecutively, vertex j of
the first component is adjacent to vertex s+jHY ' (mod N) of the second
component where s is determined by (4). Vertex j# w of the second component is
adjacent to vertex (j+e)H + R (mod N) where

{0, ifw+R<j+R=N-1(mod N)
e=
1, if0=<j+R<w+R (mod N)

and vertex w is adjacent to no vertex. Thus, the original sequence is a ggs if and
only if the above obtained bipartite graph has a hamiltonian path whose initial
vertex is vertex 0 in the first component and terminal vertex is vertex w in the
second component, or equivalently, the obtained graph is connected. Clearly, this
criterion can be further reduced to a question of the connectedness of a graph
consisting of N vertices. This is the essence of the following theorem.
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THEOREM 5. Suppose G* is a group generated by the elements a and b with
the subgroup generated by ¢ =ba™" normal in G*. Let N, M, R, and H be as
defined in (1). Then a sequence of a’s and b’s is a ggs if and only if the sequence is
of the form (3) and 0, f(0), f®(0),...,f""Y(0) are all defined and distinct (f®
denotes f composed with itself i times) where

j+R+Hs, ifw+R<t=N-1
f()={j+R+H(s+1), if 0=, <w+R (5)
undefined, if t=w+R

where all operations are modulo N, t;=jH™ '+R+s (mod N), and s is defined
by (4).

The number of ggs for a given group is given by

N-1
Y a(s)B(s) (6)
s=0

where a(s) is the number of (M —1)-tuples (e, e, ..., enr—1) of 0’s and 1’s for

which ¥M7! e HM " =5 and B(s) is the number of whole products w,0=w <N,
for which s and w satisfy the criterion for a ggs by the theorem. A computer can
be readily used to compute (6) as long as the order of G is not too large. Some
calculations have been performed by the author and are presented in Table 2.

Since a ggs is cyclic if and only if the whole product is a ™' or b~ (w=—R or
—R —1), the theorem immediately implies the following result due originally to
Rankin.

COROLLARY. (Rankin [8, Theorem 4]). Suppose G* is as in the theorem.
Let S be the subsequence Xy, X, ...,Xy Where x;=c%a for i=1,2,...,M; let
t=R+YM, ¢ HM*1" (mod N). Then a sequence is a cyclic ggs if and only if
(t, N)=1 and the sequence will be of the foom S, S, ..., S.

The results simplify somewhat when the special case of abelian groups (H= 1)'
is considered. For this case (5) becomes

t, if wtR<f,=N-1
f=q4+1, if 0=, <w+R

undefined, if t=w+R,
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Table 2
The number of ggs’s and cyclic ggs’s in a
and b for some abelian Rankin groups G*
as characterized by (1) of order 24.

N M R ggs’s cggs’s

12 2 8 8 0
9 10 1
10 7 2
8 3 1 13 4
2 12 4
6 4 1 18 2
2 18 4
3 15 7
4 6 1 44 32
2 48 32
3 52 32
3 8 2 170 170
3 171 171
2 12 1 2048 2048

where all operations are modulo N,f=j+R+s(modN), and s=
M-1 ¢ (mod N). So, since s is just the number of b’s (mod N) in segment S of
(3), to calculate the number of ggs, the following formula can be used in (6):

» M-1 M_1
a(s)= z ( . )
i=0 )
j=s (mod N)

The same considerations in conjunction with the corollary yield upon simplifica-
tion the following formula for the number of cyclic ggs:

L ()
i=o \Jj/
(R+j,N)=1

The results of this section are not quite as “nice” as those of Section 4, but it
does not appear that the results can be simplified (see Table 2) except in more
restrictive subclasses.
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