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Abstract. Young showed in a paper of 1985 (Int. J. Game Theory 14, 65-72)
that no core allocation method can be coalitionally monotonic on cooperative
games with five or more players. This note extends Young’s result. No core
allocation method can be coalitionally monotonic on cooperative games with
four or more players, and there is an infinite class of core allocation methods
that are coalitionally monotonic on three-player cooperative games. Journal
of Economic Literature
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An n-player cooperative game is a real-valued function v defined on all coali-
tions S € N = {1,2,...,n} such that v(&) = 0. An allocation for the n-player
game v is a real number vector x = (x, Xy, . . ., X,) satisfying >,y x; = v(N).
The latter condition is referred to as efficiency. An allocation method is a
function @ which assigns for each game an allocation. The core of a game v,
denoted by Core(v), is the set of all allocations x satisfying > ;. s x; = v(S) for
all coalitions S = N. An allocation method 6 is a core allocation method if
0(v) € Core(v) whenever Core(v) # 0. An allocation method 8 is coalitionally
monotonic if an increase in the worth of a particular coalition implies no
decrease in the allocation to any member of that coalition: #(T') < v(T) for
some coalition T and u(S) = v(S) for all coalitions S # T implies 6;(u) <
6:(v) for all i e T. Both properties are desirable: no coalition can do better
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on its own if a core allocation method is used, and there is no incentive
to underreport worths of coalitions if a coalitionally monotonic allocation
method is used.

Young (1985) proved there exists no core allocation method that is coali-
tionally monotonic on games with five or more players. This result is reported
again in Young (1994). We extend this result to games with four players in
Theorem 1 and show that the result cannot be extended to games with three
players in Theorem 3. In the interest of notational brevity, we will dispense
with set brackets and commas when writing specific coalitions, for example,
v({1,2}) and {{1,2},{1,3},{2,3}} will be written v(12) and {12,13,23},
respectively.

Theorem 1. For |[N| = 4 there is no core allocation method that is coalitionally
monotonic.

Proof. Suppose 8 is a core allocation method that is coalitionally monotonic
on four-player games. Consider the four-player game v defined by v(1) = v(2)
=v(3) = v(4) = v(12) =v(34) =0, v(N) =2, and v(S) = 1 otherwise. Con-
sider the four different games v!, v2, v3, and v*, which are defined to be the
same as v except that v'(134) = 2, v2(234) = 2, v3(123) = 2, and v*(124) = 2.
In each new game, the core has a unique allocation: Core(v') = Core(v?) =
{(0,0,1,1)} and Core(v®) = Core(v*) = {(1,1,0,0)}." Since 4 is a core allo-
cation method, 8(v') = 8(v?) = (0,0,1,1) and 8(v*) = 6(v*) = (1,1,0,0).
Notice that v(134) < v'(134) and v(S) = v!(S) for all S # {1,3,4}. Since
0 is coalitionally monotonic, 8, (v) < 6;(v') = 0. By similar arguments, we can
show that 6;(v) < 6;(v') = 0 for i = 1,2, 3,4. But this violates efficiency of the
allocation 6(v). Thus, € cannot be both core and coalitionally monotonic. []

Definition. Let o = (o;,0,...,0,-1) be a vector consisting of positive real
numbers. Define the a-excess of a nontrivial (not & or N) coalition S with re-
spect to the allocation X to be e,(S,x) = ay5)(v(S) — ;.5 X:i) where |S| is the
number of players in S. Let ey(X) be the vector of a-excesses ordered from
largest to smallest. The a-prenucleolus of the game v is the allocation that
lexicographically minimizes e,(-).

The a-prenucleolus is a generalization of two better known allocation
methods. The nucleolus defined by Schmeidler (1969) has o = 1 for all k. The
per capita nucleolus defined by Grotte (1970) has o, = 1/k for all k. Geo-
metrically (see the Figure), the a-prenucleolus is the lexicographic center of
the core: If the core is nonempty, it is shrunk by moving each coalition
hyperplane Y, ¢X; = v(S) + cs by increasing each cs from zero at a rate
proportional to the reciprocal of aj5. Movement is stopped when further
movement would result in an empty set. If a unique allocation is not obtained,
the coalition hyperplanes not forming the boundary of the shrunk core con-

! Indeed, it is easily verified that the given allocations are contained in the stated cores. Now
suppose x € Core(v'). Then 0 = v'(2) < x; = v'(N) —x1 — x3 — x4 < v'(N) —v'(134) =0, and
§0 x2 = 0. Furthermore, x3 = x2 + x3 > v!(23) = 1 and x4 = x2 + x4 2 v'(24) = 1. It now fol-
lows from efficiency and x) > 0 that x; = x4 = 1. We conclude that Core(v') = {(0,0,1,1)}. A
similar argument can be given for each of the remaining games.
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tinue to move until further movement would result in an empty set. This pro-
cess is repeated until a unique allocation is obtained. If the core is empty, the
initial movement of the coalition hyperplanes is outward (decreasing the cs)
until a nonempty set is obtained.

Example. Consider the game v defined by v(123) = 2, v(23) =1,and v(S) =0
otherwise. Suppose ay=1—1 ap =t and 0<t< 2/3. We will show
that x = (1,1 — /2,1 — t/2) is the a-prenucleolus of v. Note first that e,(1,x)
= €,(23,X) = —t(1 — 1), €,(12,%) = e,(13,%X) = —t(1+1¢/2) < —1(1 —1t), and
ex(2,X) = e,(3,x) = —(1-H(1—1/2) < —t(1 —f) where the inequalities
follow from the restriction 0 < ¢ < 2/3. Now suppose that y is an allocation
for which e,(y) is no larger lexicographically than e,(x). So, the largest
excess of y can be no larger than the largest excess of x. In particular,
(1= (-y)=ea(l,y)< — t(1—1) and 1(1-y,—y;)=ex(23,y) < ~1(1-0).
So, yy=>tand y,+y; 22—t By efficiency, 2 = y; + ¥, + y3 = 2. Hence,
the earlier inequalities must be equalities. In particular, y, =t = x. A similar
argument involving the next largest excesses of x and y shows that y =x.
Hence, x is the allocation that lexicographically minimizes e,(-). Geometri-
cally (see Figure 1), the x; = ¢ and x, + x3 = 2 + ¢23 hyperplanes meet first.

Fig. 1. The space of allocations {x : x; + x2 + X3 = 2} for the Example game with ¢ = 0.2. The
dotted lines indicate the initial positions of the coalition hyperplanes which form the core (the
solid trapezoid). All six coalition hyperplanes move inward, those corresponding to pairs moving
a1 /oy = 4 times faster than those corresponding to singletons, stopping when further movement
would make the shrinking core empty (solid lines). Finally, the four unrestricted coalition hyper-
planes (arrows indicating direction) continue to move until further movement would make the
shrinking core empty resulting this time in a unique point, the a-prenucleolus.
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Next either (1) the x;+x2 =ci2 and x; +Xx3 = €13 hyperplanes meet if
t<2/5, or (2) the xx =02 and x3 = ¢; hyperplanes meet if ¢ > 2/5. The
a-prenucleolus is the unique intersection of the hyperplanes.

Theorem 2. The a-prenucleolus is a core allocation method.

Proof. Suppose there exists an allocation y € Core(v). Then 37, s ¥; 2 v(S)
for all coalitions S. Since a5 > 0, ex(S,y) = o5 (0(S) — Ljes ¥i) < 0 for all
coalitions S. Since the a-prenucleolus x of v lexicographically minimizes e(-)
among all allocations, s)(v(S) — > ;s x;) = ex(S,x) < 0 for all coalitions S.
Since ajs) > 0, D jesXi 2 v(S) for all coalitions S. Hence, x & Core(v). O

Theorem 3. For |N| = 3 the a-prenucleoli satisfying oy = oz > 0 form an infinite
class of core allocation methods which are coalitionally monotonic.

Proof. The Example (with the restriction 0 <7 < 1/2) and Theorem 2 show
that the a-prenucleoli satisfying o > o2 > 0 is an infinite class of core alloca-
tion methods. To complete the proof, we will show that for all ay > ay > 0,
the a-prenucleolus is coalitionally monotonic. We will do this by an explicit
construction and examination of all possible formulas for the a-prenucleoli.

Suppose X is the a-prenucleolus for the 3-player game v. Let % be the
collection of all nontrivial coalitions with maximum coalitional excess. We
claim that %, must be a superset of {12,13,23} ora partition of N. Indeed, if
4, is not a superset of {12,13,23} nor a partition of N, then %, must consist
of either

1. one pair {ij};
2. two pairs {ij, jk}; ]
3. one singleton or one singleton with pairs that include the singleton {j},

{,ij}, or {J, i, jk}; or

4. two singletons or two singletons with their union {i, j} or {i,/,ij}-
In the first and last cases, let y; = xi +& y; = X t & and y, = xx — 2¢. In the
middle two cases, let y; =x; +2¢, y; =X — & and y, = x; — & Cleatly, y
is an allocation. For sufficiently small & > 0, ex(y) will be lexicographically
smaller than e,(x). This contradiction to the assumption that x is the o-
prenucleolus verifies the claim.?

By the verified claim, we need consider only three cases: % is a superset of
{12,13,23}, {1,2,3}, 0ra partition of the players into a singleton and a pair,
which we will denote {1,23} by possibly relabeling the players.

Case 1. Suppose {2,13,23} < %,. Then ex(12,%) = ex(13,X) = €x(23,%).
With the addition of the efficiency condition, x; + x2 +x3 = v(123), this sys-
tem of equations has the unique solution

x1 = (v(123) + v(12) + v(13) - 20(23))
x; = 3(v(123) + v(12) + v(23) - 20(13))
x3 = 3(v(123) + v(13) +v(23) - 20(12)).

2 Note that we have essentially proved a special case of Kohlberg’s (1971) characterization of the
nucleolus (generalized here to the a-p_renucleolus).
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Case 2. Suppose {1,2,3} < #i. Then e,(1,x) = ex(2, %) = €x(3,%). With
the addition of the efficiency condition, this system of equations has the
unique solution

x1 = (v(123) + 20(1) — v(2) — v(3))
x2 = §(v(123) + 20(2) — v(3) — ©(1))
x3 = §(v(123) + 20(3) — (1) — v(2)).

Case 3. Suppose {1,23} < #,. Then e,(1,x) = €,(23,x) and the efficiency
condition yield two equations. Let %, be the collection of all nontrivial co-
alitions not in @, with maximal coalitional excess. We claim that %, must be
a superset of {12,13}, {2,3}, or a partition of N. Indeed, if %, is not a su-
perset of {12,13}, {2, 3}, nor a partition of N, then %, must be {j}, {1/}, or
{j,1j} where j=2 or j=3. Let y,=x1, ;=X +¢ and y, =x¢ —¢&.
Clearly, y is an allocation satisfying e,(1,y) = €x(23,y) = ea(1,X) = ea(23, X).
For sufficiently small & > 0, e,(y) will be lexicographically smaller than e, (x).
This contradiction to the assumption that x is the a-prenucleolus verifies the
claim.

By the verified claim, we need consider only three subcases: A, is a super-
set of {12,13}, {2,3}, or a partition of the players into a singleton and a pair,
which we will denote {2,13} by possibly relabeling the players. Each subset
yields a third independent equation. Let & = ok /(o1 + o) for k =1,2.

Case 3a. Suppose {12,13} < #,. Then e,(12,x) = e,(13,x). With the
addition of the Case 3 equations, this system has the unique solution

X = &20(123) —_ &20(23) -+ &10(])
X2 = 3(@10(123) — v(13) + v(12) + 820(23) — d1v(1))
x3 = 4(810(123) — v(12) + v(13) + &0(23) — &10(1)).

Case 3b. Suppose {2,3} € #. Then e,(2,X) = ¢,(3,x). With the addition
of the Case 3 equations, this system has the unique solution

X = &20(123) —_ &20(23) + &10(1)
X2 = Y@10(123) + d20(23) — &1v(1) +v(2) — v(3))
x3 = §(@10(123) + &0(23) — &10(1) — v(2) + v(3)).

Case 3c. Suppose {2,13} S B,. Then e,(2,x) = ¢,(13,x). With the addi-
tion of the Case 3 equations, this system has the unique solution

X1 = &20(123) —_ &20(23) + &1!)(1)
Xy = &20(123) - &20(13) + &10(2)
x3 = (& — 2)v(123) + do0(13) + 620(23) — &1v(1) — d1v(2).

Note that each set of formulas holds on a full-dimensional, closed, and
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convex subset of the vector space of all three-player games.® Further, where
two or more sets of formulas are applicable, they must agree with each other
because the coalitional excess equalities defining each set of formulas must all
be satisfied.

An examination of each formula for x; shows that the coefficients of v(S)
for all coalitions S containing i are nonnegative (we use our assumption
that a; > a; in the formula for x; in case 3c). Hence, at every game v, the a-
prenucleolus for player i is a nondecreasing function of v(S) for each coalition
S containing i. Thus, the a-prenucleolus is coalitionally monotonic on the
space of three-player games. O
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