A Biological Auction
 Valparaiso University Talk

David Housman

Goshen College
July 8, 2010

Outline

- A strange auction

Outline

- A strange auction
- The biological connection

Outline

- A strange auction
- The biological connection
- A strange auction repeated

Outline

- A strange auction
- The biological connection
- A strange auction repeated
- Best response to a known opponent

Outline

- A strange auction
- The biological connection
- A strange auction repeated
- Best response to a known opponent
- Biologically optimal strategy

Outline

- A strange auction
- The biological connection
- A strange auction repeated
- Best response to a known opponent
- Biologically optimal strategy
- Concluding remarks

A Strange Auction

- Open ascending bid auction for a prize.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.
- No one else pays.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.
- No one else pays.
- Play now!

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.
- No one else pays.
- Play now!
- Biological interpretation.

A Strange Auction Repeated

- The value of the prize to you is on the paper and was drawn from a uniform distribution on 0 to 1000 .

A Strange Auction Repeated

- The value of the prize to you is on the paper and was drawn from a uniform distribution on 0 to 1000 .
- Sealed (nonnegative) bid auction for the prize.

A Strange Auction Repeated

- The value of the prize to you is on the paper and was drawn from a uniform distribution on 0 to 1000 .
- Sealed (nonnegative) bid auction for the prize.
- Both of us pay the lower bid, but only the higher bidder wins the prize.

A Strange Auction Repeated

- The value of the prize to you is on the paper and was drawn from a uniform distribution on 0 to 1000 .
- Sealed (nonnegative) bid auction for the prize.
- Both of us pay the lower bid, but only the higher bidder wins the prize.
- Repeat 30 times with a variety of opponents.

A Strange Auction Repeated

- The value of the prize to you is on the paper and was drawn from a uniform distribution on 0 to 1000 .
- Sealed (nonnegative) bid auction for the prize.
- Both of us pay the lower bid, but only the higher bidder wins the prize.
- Repeat 30 times with a variety of opponents.
- Keep track of the strategy you use and its effectiveness.

A Strange Auction Repeated

- The value of the prize to you is on the paper and was drawn from a uniform distribution on 0 to 1000 .
- Sealed (nonnegative) bid auction for the prize.
- Both of us pay the lower bid, but only the higher bidder wins the prize.
- Repeat 30 times with a variety of opponents.
- Keep track of the strategy you use and its effectiveness.
- Play now!

A Strange Auction Repeated

- The value of the prize to you is on the paper and was drawn from a uniform distribution on 0 to 1000 .
- Sealed (nonnegative) bid auction for the prize.
- Both of us pay the lower bid, but only the higher bidder wins the prize.
- Repeat 30 times with a variety of opponents.
- Keep track of the strategy you use and its effectiveness.
- Play now!
- What were the most effective strategies?

Strange Auction Model I

- Both players pay the lower bid, but only the higher bidder wins the prize.

Strange Auction Model I

- Both players pay the lower bid, but only the higher bidder wins the prize.
- A player knows what the prize is worth to him/her but not what it is worth to his/her opponent.

Strange Auction Model I

- Both players pay the lower bid, but only the higher bidder wins the prize.
- A player knows what the prize is worth to him/her but not what it is worth to his/her opponent.
- $f(v)$ is the probability density the prize is worth v to a player.

Strange Auction Model I

- Both players pay the lower bid, but only the higher bidder wins the prize.
- A player knows what the prize is worth to him/her but not what it is worth to his/her opponent.
- $f(v)$ is the probability density the prize is worth v to a player.
- $\beta(v)$ is the opponent's bid if the prize is worth v to him.

Strange Auction Model I

- Both players pay the lower bid, but only the higher bidder wins the prize.
- A player knows what the prize is worth to him/her but not what it is worth to his/her opponent.
- $f(v)$ is the probability density the prize is worth v to a player.
- $\beta(v)$ is the opponent's bid if the prize is worth v to him.
- If I value the prize at v and bid b, my expected payoff is

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

Strange Auction Model I

- Both players pay the lower bid, but only the higher bidder wins the prize.
- A player knows what the prize is worth to him/her but not what it is worth to his/her opponent.
- $f(v)$ is the probability density the prize is worth v to a player.
- $\beta(v)$ is the opponent's bid if the prize is worth v to him.
- If I value the prize at v and bid b, my expected payoff is

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- I want to choose $b \geq 0$ to maximize $\pi(b)$.

Payoff Maximization (General Case)

- Maximize the following at $b=b^{*}$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

Payoff Maximization (General Case)

- Maximize the following at $b=b^{*}$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

Payoff Maximization (General Case)

- Maximize the following at $b=b^{*}$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- Assume β is differentiable.

$$
\pi^{\prime}(b)=\frac{\left(v-\beta\left(\beta^{-1}(b)\right)\right) f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}-\left(1-F\left(\beta^{-1}(b)\right)\right)+\frac{b f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}
$$

Payoff Maximization (General Case)

- Maximize the following at $b=b^{*}$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- Assume β is differentiable.

$$
\pi^{\prime}(b)=\frac{\left(v-\beta\left(\beta^{-1}(b)\right)\right) f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}-\left(1-F\left(\beta^{-1}(b)\right)\right)+\frac{b f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}
$$

- Simplify.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

Payoff Maximization (General Case)

- Maximize the following at $b=b^{*}$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- Assume β is differentiable.

$$
\pi^{\prime}(b)=\frac{\left(v-\beta\left(\beta^{-1}(b)\right)\right) f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}-\left(1-F\left(\beta^{-1}(b)\right)\right)+\frac{b f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}
$$

- Simplify.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- First order necessary condition $\pi^{\prime}\left(b^{*}\right)=0$.

$$
\left.0=v f\left(\beta^{-1}\left(b^{*}\right)\right) / \beta^{\prime}\left(\beta^{-1}\left(b^{*}\right)\right)\right)-\left(1-F\left(\beta^{-1}\left(b^{*}\right)\right)\right)
$$

Payoff Maximization (Special Case)

- First order necessary condition.

$$
\left.0=\pi^{\prime}\left(b^{*}\right)=v f\left(\beta^{-1}\left(b^{*}\right)\right) / \beta^{\prime}\left(\beta^{-1}\left(b^{*}\right)\right)\right)-\left(1-F\left(\beta^{-1}\left(b^{*}\right)\right)\right)
$$

Payoff Maximization (Special Case)

- First order necessary condition.

$$
\left.0=\pi^{\prime}\left(b^{*}\right)=v f\left(\beta^{-1}\left(b^{*}\right)\right) / \beta^{\prime}\left(\beta^{-1}\left(b^{*}\right)\right)\right)-\left(1-F\left(\beta^{-1}\left(b^{*}\right)\right)\right)
$$

- Suppose $f(v)=1, v \in[0,1]$ and $\beta(v)=a v, v \in[0,1]$. Hence, $F(v)=v, v \in[0,1]$ and $\beta^{-1}(b)=b / a, b \in[0, a]$.

$$
0=v \cdot 1 / a-\left(1-b^{*} / a\right)
$$

Payoff Maximization (Special Case)

- First order necessary condition.

$$
\left.0=\pi^{\prime}\left(b^{*}\right)=v f\left(\beta^{-1}\left(b^{*}\right)\right) / \beta^{\prime}\left(\beta^{-1}\left(b^{*}\right)\right)\right)-\left(1-F\left(\beta^{-1}\left(b^{*}\right)\right)\right)
$$

- Suppose $f(v)=1, v \in[0,1]$ and $\beta(v)=a v, v \in[0,1]$. Hence, $F(v)=v, v \in[0,1]$ and $\beta^{-1}(b)=b / a, b \in[0, a]$.

$$
0=v \cdot 1 / a-\left(1-b^{*} / a\right)
$$

- Solve for b^{*}.

$$
b^{*}=a-v
$$

Payoff Maximization (Special Case)

- First order necessary condition.

$$
\left.0=\pi^{\prime}\left(b^{*}\right)=v f\left(\beta^{-1}\left(b^{*}\right)\right) / \beta^{\prime}\left(\beta^{-1}\left(b^{*}\right)\right)\right)-\left(1-F\left(\beta^{-1}\left(b^{*}\right)\right)\right)
$$

- Suppose $f(v)=1, v \in[0,1]$ and $\beta(v)=a v, v \in[0,1]$. Hence, $F(v)=v, v \in[0,1]$ and $\beta^{-1}(b)=b / a, b \in[0, a]$.

$$
0=v \cdot 1 / a-\left(1-b^{*} / a\right)
$$

- Solve for b^{*}.

$$
b^{*}=a-v
$$

- We have found a local minimum!

$$
\begin{aligned}
\pi^{\prime}(b) & =v / a-1+b / a \\
\pi(b) & =(v / a-1) b+(1 / 2 a) b^{2}
\end{aligned}
$$

Payoff Maximization (Special Case)

- First order necessary condition.

$$
\left.0=\pi^{\prime}\left(b^{*}\right)=v f\left(\beta^{-1}\left(b^{*}\right)\right) / \beta^{\prime}\left(\beta^{-1}\left(b^{*}\right)\right)\right)-\left(1-F\left(\beta^{-1}\left(b^{*}\right)\right)\right)
$$

- Suppose $f(v)=1, v \in[0,1]$ and $\beta(v)=a v, v \in[0,1]$. Hence,

$$
F(v)=v, v \in[0,1] \text { and } \beta^{-1}(b)=b / a, b \in[0, a] .
$$

$$
0=v \cdot 1 / a-\left(1-b^{*} / a\right)
$$

- Solve for b^{*}.

$$
b^{*}=a-v
$$

- We have found a local minimum!

$$
\begin{aligned}
\pi^{\prime}(b) & =v / a-1+b / a \\
\pi(b) & =(v / a-1) b+(1 / 2 a) b^{2}
\end{aligned}
$$

- The correct maximum is a trigger strategy.

$$
b^{*}= \begin{cases}0, & \text { if } v \leq a / 2 \\ a, & \text { if } v \geq a / 2\end{cases}
$$

Strange Auction Model II

- Both players pay the lower bid, but only the higher bidder wins the prize.
- A player knows what the prize is worth to him/her but not what it is worth to his/her opponent.
- $f(v)$ is the probability density the prize is worth v to a player.
- $\beta(v)$ is the opponent's bid if the prize is worth v to him.
- If I value the prize at v and bid b, my expected payoff is

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume $\beta(v)$ is the player's payoff maximizing bid, that is,

$$
\pi(\beta(v)) \geq \pi(b)
$$

for all $b \geq 0$.

Payoff Maximization (General Case)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

Payoff Maximization (General Case)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- As before, take the derivative.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

Payoff Maximization (General Case)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- As before, take the derivative.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

Payoff Maximization (General Case)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- As before, take the derivative.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

- Solve for β^{\prime}.

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

Payoff Maximization (General Case)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- As before, take the derivative.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

- Solve for β^{\prime}.

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

- Solve for β.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

Payoff Maximization (General Case)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- As before, take the derivative.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

- Solve for β^{\prime}.

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

- Solve for β.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- This function is differentiable and increasing from $\beta(0)=0$.

Payoff Maximization (Special Case)

- Suppose $f(u)=1, u \in[0,1]$ and $F(u)=u, u \in[0,1]$.

Payoff Maximization (Special Case)

- Suppose $f(u)=1, u \in[0,1]$ and $F(u)=u, u \in[0,1]$.
- $\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u=\int_{0}^{v} \frac{u}{1-u} d u=-v-\ln (1-v)$.

Payoff Maximization (Special Case)

- Suppose $f(u)=1, u \in[0,1]$ and $F(u)=u, u \in[0,1]$.
- $\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u=\int_{0}^{v} \frac{u}{1-u} d u=-v-\ln (1-v)$.
- $\pi_{\max }(v)=\frac{1}{2} v^{2}$.

Payoff Maximization Verification

- To verify we have found a maximum, substitute

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

Payoff Maximization Verification

- To verify we have found a maximum, substitute

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

- into

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

Payoff Maximization Verification

- To verify we have found a maximum, substitute

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

- into

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- to obtain

$$
\pi^{\prime}(b)=\left(1-F\left(\beta^{-1}(b)\right)\left(v / \beta^{-1}(b)-1\right)\right.
$$

Payoff Maximization Verification

- To verify we have found a maximum, substitute

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

- into

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- to obtain

$$
\pi^{\prime}(b)=\left(1-F\left(\beta^{-1}(b)\right)\left(v / \beta^{-1}(b)-1\right)\right.
$$

- which is positive if $b<\beta(v)$

Payoff Maximization Verification

- To verify we have found a maximum, substitute

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

- into

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- to obtain

$$
\pi^{\prime}(b)=\left(1-F\left(\beta^{-1}(b)\right)\left(v / \beta^{-1}(b)-1\right)\right.
$$

- which is positive if $b<\beta(v)$
- and negative if $b>\beta(v)$.

Payoff Using the Strategy

- The payoff to a player who values the prize at v and bids b

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

Payoff Using the Strategy

- The payoff to a player who values the prize at v and bids b

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- is maximized at $b=\beta(v)$

$$
\pi_{\max }(v)=\int_{0}^{v}(v-\beta(u)) f(u) d u-\beta(v)(1-F(v))
$$

Payoff Using the Strategy

- The payoff to a player who values the prize at v and bids b

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- is maximized at $b=\beta(v)$

$$
\pi_{\max }(v)=\int_{0}^{v}(v-\beta(u)) f(u) d u-\beta(v)(1-F(v))
$$

- Hence,

$$
\pi_{\max }(0)=0
$$

Payoff Using the Strategy

- The payoff to a player who values the prize at v and bids b

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- is maximized at $b=\beta(v)$

$$
\pi_{\max }(v)=\int_{0}^{v}(v-\beta(u)) f(u) d u-\beta(v)(1-F(v))
$$

- Hence,

$$
\pi_{\max }(0)=0
$$

- Taking the derivative

$$
\pi_{\max }^{\prime}(v)=(v-\beta(v)) f(v)+F(v)-\beta^{\prime}(v)(1-F(v))+\beta(v) f(v)
$$

Payoff Using the Strategy

- The payoff to a player who values the prize at v and bids b

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- is maximized at $b=\beta(v)$

$$
\pi_{\max }(v)=\int_{0}^{v}(v-\beta(u)) f(u) d u-\beta(v)(1-F(v))
$$

- Hence,

$$
\pi_{\max }(0)=0
$$

- Taking the derivative

$$
\pi_{\max }^{\prime}(v)=(v-\beta(v)) f(v)+F(v)-\beta^{\prime}(v)(1-F(v))+\beta(v) f(v)
$$

Payoff Using the Strategy

- The payoff to a player who values the prize at v and bids b

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- is maximized at $b=\beta(v)$

$$
\pi_{\max }(v)=\int_{0}^{v}(v-\beta(u)) f(u) d u-\beta(v)(1-F(v))
$$

- Hence,

$$
\pi_{\max }(0)=0
$$

- Taking the derivative

$$
\begin{aligned}
\pi_{\max }^{\prime}(v) & =(v-\beta(v)) f(v)+F(v)-\beta^{\prime}(v)(1-F(v))+\beta(v) f(v) \\
& =v f(v)+F(v)-\frac{v f(v)}{1-F(v)}(1-F(v))
\end{aligned}
$$

Payoff Using the Strategy

- The payoff to a player who values the prize at v and bids b

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- is maximized at $b=\beta(v)$

$$
\pi_{\max }(v)=\int_{0}^{v}(v-\beta(u)) f(u) d u-\beta(v)(1-F(v))
$$

- Hence,

$$
\pi_{\max }(0)=0
$$

- Taking the derivative

$$
\begin{aligned}
\pi_{\max }^{\prime}(v) & =(v-\beta(v)) f(v)+F(v)-\beta^{\prime}(v)(1-F(v))+\beta(v) f(v) \\
& =v f(v)+F(v)-\frac{v f(v)}{1-F(v)}(1-F(v)) \\
& =F(v) \geq 0
\end{aligned}
$$

Payoff Using the Strategy

- The payoff to a player who values the prize at v and bids b

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- is maximized at $b=\beta(v)$

$$
\pi_{\max }(v)=\int_{0}^{v}(v-\beta(u)) f(u) d u-\beta(v)(1-F(v))
$$

- Hence,

$$
\pi_{\max }(0)=0
$$

- Taking the derivative

$$
\begin{aligned}
\pi_{\max }^{\prime}(v) & =(v-\beta(v)) f(v)+F(v)-\beta^{\prime}(v)(1-F(v))+\beta(v) f(v) \\
& =v f(v)+F(v)-\frac{v f(v)}{1-F(v)}(1-F(v)) \\
& =F(v) \geq 0
\end{aligned}
$$

- The more you value the prize, the higher your expected payoff.

Surprising Observation

- Recall the optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

Surprising Observation

- Recall the optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} d u f(v) d v
$$

Surprising Observation

- Recall the optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} d u f(v) d v
$$

- Interchange integrals $(0 \leq u \leq v<\infty)$.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \frac{u f(u)}{1-F(u)} \int_{u}^{\infty} f(v) d v d u
$$

Surprising Observation

- Recall the optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} d u f(v) d v
$$

- Interchange integrals $(0 \leq u \leq v<\infty)$.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \frac{u f(u)}{1-F(u)} \int_{u}^{\infty} f(v) d v d u
$$

- Since the inner integral is $1-F(u)$,

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} u f(u) d u
$$

Surprising Observation

- Recall the optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} d u f(v) d v
$$

- Interchange integrals $(0 \leq u \leq v<\infty)$.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \frac{u f(u)}{1-F(u)} \int_{u}^{\infty} f(v) d v d u
$$

- Since the inner integral is $1-F(u)$,

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} u f(u) d u
$$

- The average bid equals the average value.

Surprising Observation

- Recall the optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} d u f(v) d v
$$

- Interchange integrals $(0 \leq u \leq v<\infty)$.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \frac{u f(u)}{1-F(u)} \int_{u}^{\infty} f(v) d v d u
$$

- Since the inner integral is $1-F(u)$,

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} u f(u) d u
$$

- The average bid equals the average value.
- For some prize values v, the bid $\beta(v)$ is greater than the value!

Concluding Remarks

Concluding Remarks

- Find the probability that the prize is won and too much is paid.

Concluding Remarks

- Find the probability that the prize is won and too much is paid.
- Repeat the analysis if only the winner pays the lower bid.

Concluding Remarks

- Find the probability that the prize is won and too much is paid.
- Repeat the analysis if only the winner pays the lower bid.
- Repeat the analysis if only the winner pays the higher bid.

Questions?

David Housman dhousman@goshen.edu

