An Extremely Simple Fair Division Problem How to Divide a Chocolate Bar When Different People Value it Differently

David Housman and Seth Unruh

Goshen College

October 2009

Hard Fair Division Problem

Hard Fair Division Problem

- Two people are to split a cake fairly.

Hard Fair Division Problem

- Two people are to split a cake fairly.
- The cake is not homogeneous.

Hard Fair Division Problem

- Two people are to split a cake fairly.
- The cake is not homogeneous.
- Personal preferences may be complex.

Hard Fair Division Problem

- Two people are to split a cake fairly.
- The cake is not homogeneous.
- Personal preferences may be complex.
- There may be strategic effects.

Hard Fair Division Problem

- Two people are to split a cake fairly.
- The cake is not homogeneous.
- Personal preferences may be complex.
- There may be strategic effects.
- "I divide, you choose" is the oft-cited solution.

Trivial Fair Division Problem

Trivial Fair Division Problem

- Three people have equal shares in a chocolate bar.

Trivial Fair Division Problem

- Three people have equal shares in a chocolate bar.
- The chocolate bar is homogeneous.

Trivial Fair Division Problem

- Three people have equal shares in a chocolate bar.
- The chocolate bar is homogeneous.
- Perfectly accurate measuring and cutting devices are available.

Trivial Fair Division Problem

- Three people have equal shares in a chocolate bar.
- The chocolate bar is homogeneous.
- Perfectly accurate measuring and cutting devices are available.
- Each person is honest, self-interested, and finds twice as much chocolate twice as good.

Trivial Fair Division Problem

- Three people have equal shares in a chocolate bar.
- The chocolate bar is homogeneous.
- Perfectly accurate measuring and cutting devices are available.
- Each person is honest, self-interested, and finds twice as much chocolate twice as good.
- Only the chocolate bar can be allocated.

Simple Fair Division Problem

- Three people have equal shares in a chocolate bar.
- The chocolate bar is homogeneous.
- Perfectly accurate measuring and cutting devices are available.
- Each person is honest, self-interested, and finds twice as much chocolate twice as good.
- People are willing to exchange money as well as receive chocolate.
- Each person attaches a monetary value to the chocolate.

Equal Shares Method

The chocolate will be divided and money exchanged so that each person receives the same monetary share of the chocolate and this share is maximized.

Equal Shares Method

The chocolate will be divided and money exchanged so that each person receives the same monetary share of the chocolate and this share is maximized.
Person Ann Ben Celine

Equal Shares Method

The chocolate will be divided and money exchanged so that each person receives the same monetary share of the chocolate and this share is maximized.

Person	Ann	Ben	Celine
Value	$240 \$$	180Φ	$120 \$$

Equal Shares Method

The chocolate will be divided and money exchanged so that each person receives the same monetary share of the chocolate and this share is maximized.

Person	Ann	Ben	Celine
Value	$240 \$$	$180 ф$	$120 \$$
Division	Choc		

Equal Shares Method

The chocolate will be divided and money exchanged so that each person receives the same monetary share of the chocolate and this share is maximized.

Person	Ann	Ben	Celine
Value	240Φ	180Φ	120Φ
Division	Choc		
	$-b \Phi-c \Phi$	$+b \Phi$	$+c \Phi$

Equal Shares Method

The chocolate will be divided and money exchanged so that each person receives the same monetary share of the chocolate and this share is maximized.

Person	Ann	Ben	Celine
Value	240Φ	180Φ	120Φ
Division	Choc		
	$-b \Phi-c \Phi$	$+b \Phi$	$+c \Phi$
Share	$\frac{240-b-c}{240}$	$\frac{b}{180}$	$\frac{c}{120}$

Equal Shares Method

The chocolate will be divided and money exchanged so that each person receives the same monetary share of the chocolate and this share is maximized.

Person	Ann	Ben	Celine
Value	240Φ	180Φ	120Φ
Division	Choc		
	$-b \Phi-c \Phi$	$+b \Phi$	$+c \Phi$
Share	$\frac{240-b-c}{240}$	$\frac{b}{180}$	$\frac{c}{120}$

- To equalize the monetary shares, $\frac{240-b-c}{240}=\frac{b}{180}=\frac{c}{120}$.

Equal Shares Method

The chocolate will be divided and money exchanged so that each person receives the same monetary share of the chocolate and this share is maximized.

Person	Ann	Ben	Celine
Value	240Φ	180Φ	120Φ
Division	Choc		
	$-b \Phi-c \Phi$	$+b \Phi$	$+c \Phi$
Share	$\frac{240-b-c}{240}$	$\frac{b}{180}$	$\frac{c}{120}$

- To equalize the monetary shares, $\frac{240-b-c}{240}=\frac{b}{180}=\frac{c}{120}$.
- The solution is $b=80$ and $c=53$, and each person receives a $\frac{4}{9}=44 \%$ monetary share.

Equal Shares Method

The chocolate will be divided and money exchanged so that each person receives the same monetary share of the chocolate and this share is maximized.

Person	Ann	Ben	Celine
Value	240Φ	180Φ	120Φ
Division	Choc		
	$-b \Phi-c \Phi$	$+b \Phi$	$+c \Phi$
Share	$\frac{240-b-c}{240}$	$\frac{b}{180}$	$\frac{c}{120}$

- To equalize the monetary shares, $\frac{240-b-c}{240}=\frac{b}{180}=\frac{c}{120}$.
- The solution is $b=80$ and $c=53$, and each person receives a $\frac{4}{9}=44 \%$ monetary share.
- In general, if Ann, Ben, and Celine value the chocolate bar at $A>B>C$, then give the chocolate bar to Ann and have her pay $\frac{A B}{A+B+C}$ to Ben and $\frac{A C}{A+B+C}$ to Celine. Each receives a $\frac{A}{A+B+C}$ monetary share.

Envy Appears

Person	Ann	Ben	Celine
Value	240¢	180¢	120¢
Division	Choc - 133¢	+ 80¢	$+53 ¢$

Envy Appears

Person	Ann	Ben	Celine
Value	240Φ	180Φ	120Φ
Division	Choc -133Φ	$+80 \$$	$+53 \Phi$
Ann's View	107Φ	80Φ	53Φ

Envy Appears

Person	Ann	Ben	Celine
Value	240¢	180¢	120¢
Division	Choc - 133¢	+ 80¢	$+53 ¢$
Ann's View	107¢	80¢	53¢
Ben's View	47¢	$80 ¢$	53¢

Envy Appears

Person	Ann	Ben	Celine
Value	240¢	180¢	$120 ¢$
Division	Choc - 133¢	+ 80¢	$+53 ¢$
Ann's View	107¢	$80 \$$	53¢
Ben's View	47¢	$80 ¢$	53¢
Celine's View	-13Φ	$80 ¢$	53¢

Envy Appears

Person	Ann	Ben	Celine
Value	240¢	180¢	120¢
Division	Choc - 133¢	+ 80¢	+53¢
Ann's View	107¢	80¢	53¢
Ben's View	47¢	80¢	53¢
Celine's View	$-13 \$$	80¢	53¢

Celine envies Ben.

Envy Free

Person	Ann	Ben	Celine
Value	240¢	180¢	120¢
Division	$\frac{5}{6}$ Choc - $90 \$$	$+30 \$$	+ 60¢

Envy Free

Person	Ann	Ben	Celine
Value	240¢	180¢	$120 ¢$
Division	$\frac{5}{6}$ Choc - $90 ¢$	$\frac{1}{6}$ Choc $+30 \$$	$+60 ¢$
Ann's View	110¢	$70 ¢$	60¢

Envy Free

Person	Ann	Ben	Celine
Value	240¢	180¢	120¢
Division	$\frac{5}{6}$ Choc - $90 ¢$	$\frac{1}{6}$ Choc $+30 ¢$	+60¢
Ann's View	$110 ¢$	$70 ¢$	$60 \$$
Ben's View	$60 ¢$	60\$	$60 \$$

Envy Free

Person	Ann	Ben	Celine
Value	240¢	180¢	120¢
Division	$\frac{5}{6}$ Choc - $90 ¢$	$\frac{1}{6}$ Choc $+30 ¢$	$+60 ¢$
Ann's View	$110 ¢$	$70 \$$	60¢
Ben's View	60¢	60\$	60¢
Celine's View	$10 \$$	50¢	60¢

Envy Free

Person	Ann	Ben	Celine
Value	240¢	180¢	$120 ¢$
Division	$\frac{5}{6}$ Choc - $90 ¢$	$\frac{1}{6}$ Choc $+30 ¢$	$+60 ¢$
Ann's View	$110 ¢$	$70 ¢$	$60 ¢$
Ben's View	60¢	60¢	$60 ¢$
Celine's View	$10 ¢$	$50 ¢$	$60 ¢$

No person envies another person.

m-Person Simple Fair Division Problem

- Suppose m persons value a homogeneous object at $v_{1}, v_{2}, \ldots, v_{m}$, respectively.

m-Person Simple Fair Division Problem

- Suppose m persons value a homogeneous object at $v_{1}, v_{2}, \ldots, v_{m}$, respectively.
- A division gives a fraction x_{i} of the object to person i and transfers d_{i} in money from person i.

m-Person Simple Fair Division Problem

- Suppose m persons value a homogeneous object at $v_{1}, v_{2}, \ldots, v_{m}$, respectively.
- A division gives a fraction x_{i} of the object to person i and transfers d_{i} in money from person i.
- Of course, $x_{1}, x_{2}, \ldots, x_{m} \geq 0, x_{1}+x_{2}+\cdots+x_{m}=1$, and $d_{1}+d_{2}+\cdots+d_{m}=1$.

m-Person Simple Fair Division Problem

- Suppose m persons value a homogeneous object at $v_{1}, v_{2}, \ldots, v_{m}$, respectively.
- A division gives a fraction x_{i} of the object to person i and transfers d_{i} in money from person i.
- Of course, $x_{1}, x_{2}, \ldots, x_{m} \geq 0, x_{1}+x_{2}+\cdots+x_{m}=1$, and $d_{1}+d_{2}+\cdots+d_{m}=1$.
- So, divisions are a ($2 m-2$)-dimensional subset of a $2 m$-dimensional space.

m-Person Simple Fair Division Problem

- Suppose m persons value a homogeneous object at $v_{1}, v_{2}, \ldots, v_{m}$, respectively.
- A division gives a fraction x_{i} of the object to person i and transfers d_{i} in money from person i.
- Of course, $x_{1}, x_{2}, \ldots, x_{m} \geq 0, x_{1}+x_{2}+\cdots+x_{m}=1$, and $d_{1}+d_{2}+\cdots+d_{m}=1$.
- So, divisions are a $(2 m-2)$-dimensional subset of a $2 m$-dimensional space.
- A division is envy free if for each person k and j, the value person k has for person k 's portion is at least as great as the value person k has for person j 's portion.

m-Person Simple Fair Division Problem

- Suppose m persons value a homogeneous object at $v_{1}, v_{2}, \ldots, v_{m}$, respectively.
- A division gives a fraction x_{i} of the object to person i and transfers d_{i} in money from person i.
- Of course, $x_{1}, x_{2}, \ldots, x_{m} \geq 0, x_{1}+x_{2}+\cdots+x_{m}=1$, and $d_{1}+d_{2}+\cdots+d_{m}=1$.
- So, divisions are a $(2 m-2)$-dimensional subset of a $2 m$-dimensional space.
- A division is envy free if for each person k and j, the value person k has for person k 's portion is at least as great as the value person k has for person j 's portion.
- Equivalently,

$$
v_{k} x_{k}-d_{k} \geq v_{k} x_{j}-d_{j}
$$

for all $k, j \in 1,2, \ldots, m$.

m-Person Simple Fair Division Problem

- Suppose m persons value a homogeneous object at $v_{1}, v_{2}, \ldots, v_{m}$, respectively.
- A division gives a fraction x_{i} of the object to person i and transfers d_{i} in money from person i.
- Of course, $x_{1}, x_{2}, \ldots, x_{m} \geq 0, x_{1}+x_{2}+\cdots+x_{m}=1$, and $d_{1}+d_{2}+\cdots+d_{m}=1$.
- So, divisions are a $(2 m-2)$-dimensional subset of a $2 m$-dimensional space.
- A division is envy free if for each person k and j, the value person k has for person k 's portion is at least as great as the value person k has for person j 's portion.
- Equivalently,

$$
v_{k} x_{k}-d_{k} \geq v_{k} x_{j}-d_{j}
$$

for all $k, j \in 1,2, \ldots, m$.

- So, the set of envy-free divisions is the intersection of m^{2} half-spaces.

2-Person Envy-Free Divisions

3-Person Extreme Envy-Free Divisions

The extreme vectors of the set of envy-free divisions for a 2-person fair division problem:

	x_{1}	x_{2}	d_{1}	d_{2}
L_{1}	1	0	$\frac{1}{2} v_{1}$	$-\frac{1}{2} v_{1}$
W_{1}	1	0	$\frac{1}{2} v_{2}$	$-\frac{1}{2} v_{2}$
E	$\frac{1}{2}$	$\frac{1}{2}$	0	0

3-Person Extreme Envy-Free Divisions

The extreme vectors of the set of envy-free divisions for a 2-person fair division problem:

	x_{1}	x_{2}	d_{1}	d_{2}		L_{1}	1	0	0	$\frac{2}{3} v_{1}$	$-\frac{1}{3} v_{1}$
L_{1}	1	0	$\frac{1}{2} v_{1}$	$-\frac{1}{2} v_{1}$	W_{1}	1	0	0	$\frac{2}{3} v_{1}$		
W_{1}	1	0	$\frac{1}{2} v_{2}$	$-\frac{1}{3} v_{2}$	$-\frac{1}{3} v_{2}$						
E	$\frac{1}{2}$	$\frac{1}{2}$	0	0	L_{2}	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{6} v_{2}$	$\frac{1}{6} v_{2}$	$-\frac{1}{3} v_{2}$
					W_{2}	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{6} v_{3}$	$\frac{1}{6} v_{3}$	$-\frac{1}{3} v_{3}$
					$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0	

The extreme vectors of the set of envy-free divisions for a 3-person fair division problem:
$\begin{array}{llllllll}L_{1} & 1 & 0 & 0 & \frac{2}{3} v_{1} & -\frac{1}{3} v_{1} & -\frac{1}{3} v_{1}\end{array}$
$\begin{array}{llllllll}W_{1} & 1 & 0 & 0 & \frac{2}{3} v_{2} & -\frac{1}{3} v_{2} & -\frac{1}{3} v_{2}\end{array}$
$\begin{array}{lllllll}L_{2} & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{6} v_{2} & \frac{1}{6} v_{2} & -\frac{1}{3} v_{2}\end{array}$
$\begin{array}{lllllll}W_{2} & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{6} v_{3} & \frac{1}{6} v_{3} & -\frac{1}{3} v_{3}\end{array}$
$\begin{array}{lllllll}E & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & 0\end{array}$

4-Person Extreme Envy-Free Divisions

The extreme vectors of the set of envy-free divisions for a 4-person fair division problem:

	x_{1}	x_{2}	x_{3}	x_{4}	d_{1}	d_{2}	d_{3}	d_{4}
L_{1}	1	0	0	0	$\frac{3}{4} v_{1}$	$-\frac{1}{4} v_{1}$	$-\frac{1}{4} v_{1}$	$-\frac{1}{4} v_{1}$
W_{1}	1	0	0	0	$\frac{3}{4} v_{2}$	$-\frac{1}{4} v_{2}$	$-\frac{1}{4} v_{2}$	$-\frac{1}{4} v_{2}$
L_{2}	$\frac{1}{2}$	$\frac{1}{2}$	0	0	$\frac{1}{4} v_{2}$	$\frac{1}{4} v_{2}$	$-\frac{1}{4} v_{2}$	$-\frac{1}{4} v_{2}$
W_{2}	$\frac{1}{2}$	$\frac{1}{2}$	0	0	$\frac{1}{4} v_{3}$	$\frac{1}{4} v_{3}$	$-\frac{1}{4} v_{3}$	$-\frac{1}{4} v_{3}$
L_{3}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{1}{12} v_{3}$	$\frac{1}{12} v_{3}$	$\frac{1}{12} v_{3}$	$-\frac{1}{4} v_{3}$
W_{3}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{1}{12} v_{4}$	$\frac{1}{12} v_{4}$	$\frac{1}{12} v_{4}$	$-\frac{1}{4} v_{4}$
E	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	0	0	0

m-Person Extreme Envy-Free Divisions

Seth Unruh's Theorem. Suppose there are m persons who can divide a single homogenous object of monetary value v_{i} to person i, and they are willing to transfer money. The set of envy-free divisions is the simplex with vertices $L_{1}, L_{2}, \ldots, L_{m-1}, W_{1}, W_{2}, \ldots, W_{m-1}, E$ where

	$x_{1}=\cdots=x_{k}$	$x_{k+1}=\cdots=x_{m}$	$d_{1}=\cdots=d_{k}$	$d_{k+1}=\cdots=d_{m}$
L_{k}	$\frac{1}{k}$	0	$\frac{v_{k}}{k}-\frac{v_{k}}{m}$	$-\frac{v_{k}}{m}$
L_{k}	$\frac{1}{k}$	0	$\frac{v_{k+1}}{k}-\frac{v_{k+1}}{m}$	$-\frac{v_{k+1}}{m}$
E	$\frac{1}{m}$	$\frac{1}{m}$	0	0

Envy-Free Divisions as Auctions

The extreme vectors of the set of envy-free divisions for an m-person fair division problem can be described in the following manner.

Envy-Free Divisions as Auctions

The extreme vectors of the set of envy-free divisions for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.

Envy-Free Divisions as Auctions

The extreme vectors of the set of envy-free divisions for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split the object equally among the k highest bidders.

Envy-Free Divisions as Auctions

The extreme vectors of the set of envy-free divisions for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split the object equally among the k highest bidders.
- Choose v_{k} or v_{k+1} to be the winning bid.

Envy-Free Divisions as Auctions

The extreme vectors of the set of envy-free divisions for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split the object equally among the k highest bidders.
- Choose v_{k} or v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k}$ of the winning bid.

Envy-Free Divisions as Auctions

The extreme vectors of the set of envy-free divisions for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split the object equally among the k highest bidders.
- Choose v_{k} or v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k}$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.

Envy-Free Divisions as Auctions

The extreme vectors of the set of envy-free divisions for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split the object equally among the k highest bidders.
- Choose v_{k} or v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k}$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.

Proof that the above described divisions are envy-free:

$$
v_{j} \geq v_{k} \quad>\quad v_{k+1} \geq v_{l}
$$

Envy-Free Divisions as Auctions

The extreme vectors of the set of envy-free divisions for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split the object equally among the k highest bidders.
- Choose v_{k} or v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k}$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.

Proof that the above described divisions are envy-free:

$$
v_{j} \geq v_{k} \quad>\quad v_{k+1} \geq v_{l}
$$

WinningBid

Envy-Free Divisions as Auctions

The extreme vectors of the set of envy-free divisions for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split the object equally among the k highest bidders.
- Choose v_{k} or v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k}$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.

Proof that the above described divisions are envy-free:

$$
v_{j} \geq v_{k} \quad>\quad v_{k+1} \geq v_{l}
$$

WinningBid
$\frac{1}{k}$ Object $-\frac{1}{k}$ WinningBid

Envy-Free Divisions as Auctions

The extreme vectors of the set of envy-free divisions for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split the object equally among the k highest bidders.
- Choose v_{k} or v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k}$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.

Proof that the above described divisions are envy-free:

$$
v_{j} \geq v_{k}
$$

$$
>\quad v_{k+1} \geq v_{l}
$$

WinningBid
$\frac{1}{k}$ Object $-\frac{1}{k}$ WinningBid $+\frac{1}{k}$ WinningBid
$+\frac{1}{k}$ WinningBid

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split a portion p of the object equally among the k highest bidders.

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split a portion p of the object equally among the k highest bidders.
- Choose a number between v_{k} and v_{k+1} to be the winning bid.

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split a portion p of the object equally among the k highest bidders.
- Choose a number between v_{k} and v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k} p$ of the winning bid.

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split a portion p of the object equally among the k highest bidders.
- Choose a number between v_{k} and v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k} p$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split a portion p of the object equally among the k highest bidders.
- Choose a number between v_{k} and v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k} p$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.
- Repeat above with a different p and k until the entire object is allocated.
Proof that more of the object is given to those who value the object more:

$$
j<1 \quad \text { supposition }
$$

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split a portion p of the object equally among the k highest bidders.
- Choose a number between v_{k} and v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k} p$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.
- Repeat above with a different p and k until the entire object is allocated.
Proof that more of the object is given to those who value the object more:

$$
\begin{array}{cl}
j<l & \text { supposition } \\
v_{j} x_{j}-d_{j} \geq v_{j} x_{I}-d_{I} & j \text { does not envy } I
\end{array}
$$

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split a portion p of the object equally among the k highest bidders.
- Choose a number between v_{k} and v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k} p$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.
- Repeat above with a different p and k until the entire object is allocated.
Proof that more of the object is given to those who value the object more:

$$
\begin{array}{cl}
j<l & \\
v_{j} x_{j}-d_{j} \geq v_{j} x_{I}-d_{l} & \\
j \text { does nosition } \\
v_{j} x_{j} \\
v_{I} x_{I}-d_{l} \geq v_{I} x_{j}-d_{j} & \\
l \text { does not envy } l \\
j
\end{array}
$$

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split a portion p of the object equally among the k highest bidders.
- Choose a number between v_{k} and v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k} p$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.
- Repeat above with a different p and k until the entire object is allocated.
Proof that more of the object is given to those who value the object more:

$$
\begin{aligned}
j & <l & & \text { supposition } \\
v_{j} x_{j}-d_{j} & \geq v_{j} x_{I}-d_{l} & & j \text { does not envy } I \\
v_{I} x_{I}-d_{I} & \geq v_{I} x_{j}-d_{j} & & I \text { does not envy } j \\
v_{j} x_{j}+v_{I} x_{I} & \geq v_{j} x_{I}+v_{I} x_{j} & & \text { sum the two inequalities }
\end{aligned}
$$

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split a portion p of the object equally among the k highest bidders.
- Choose a number between v_{k} and v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k} p$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.
- Repeat above with a different p and k until the entire object is allocated.
Proof that more of the object is given to those who value the object more:

$$
\begin{array}{rlrl}
j<l & & \text { supposition } \\
v_{j} x_{j}-d_{j} & \geq v_{j} x_{l}-d_{l} & & j \text { does not envy } I \\
v_{I} x_{l}-d_{l} & \geq v_{l} x_{j}-d_{j} & & I \text { does not envy } j \\
v_{j} x_{j}+v_{l} x_{l} & \geq v_{j} x_{l}+v_{l} x_{j} & & \text { sum the two inequalities } \\
\left(v_{j}-v_{l}\right) x_{j} & \geq\left(v_{j}-v_{l}\right) x_{l} & \text { rearrange }
\end{array}
$$

Envy-Free Divisions as Auctions

The extreme vectors of the set of Each envy-free division for an m-person fair division problem can be described in the following manner.

- Think of v_{i} as a bid person i places on the object.
- Split a portion p of the object equally among the k highest bidders.
- Choose a number between v_{k} and v_{k+1} to be the winning bid.
- Have each of the k highest bidders pay $\frac{1}{k} p$ of the winning bid.
- Give each person $\frac{1}{m}$ of the money paid.
- Repeat above with a different p and k until the entire object is allocated.
Proof that more of the object is given to those who value the object more:

$$
\begin{array}{rlrl}
j<l & & \text { supposition } \\
v_{j} x_{j}-d_{j} & \geq v_{j} x_{l}-d_{l} & & j \text { does not envy } I \\
v_{I} x_{l}-d_{l} & \geq v_{l} x_{j}-d_{j} & & I \text { does not envy } j \\
v_{j} x_{j}+v_{l} x_{l} & \geq v_{j} x_{l}+v_{l} x_{j} & & \text { sum the two inequalities } \\
\left(v_{j}-v_{l}\right) x_{j} & \geq\left(v_{j}-v_{l}\right) x_{l} & & \text { rearrange } \\
x_{j} & \geq x_{l} & & \text { divide by }\left(v_{j}-v_{l}\right)
\end{array}
$$

Seth Unruh's Proof

Seth Unruh's Proof

- The set of envy-free divisions is the intersection of the m^{2} half-spaces $x_{k} \geq 0$ and $v_{k} x_{k}-d_{k} \geq v_{k} x_{j}-d_{j}$ for all $k, j=1,2, \ldots, m$.

Seth Unruh's Proof

- The set of envy-free divisions is the intersection of the m^{2} half-spaces $x_{k} \geq 0$ and $v_{k} x_{k}-d_{k} \geq v_{k} x_{j}-d_{j}$ for all $k, j=1,2, \ldots, m$.
- L_{k}, W_{k}, and E are envy-free divisions for all $k=1,2, \ldots, m-1$.

Seth Unruh's Proof

- The set of envy-free divisions is the intersection of the m^{2} half-spaces $x_{k} \geq 0$ and $v_{k} x_{k}-d_{k} \geq v_{k} x_{j}-d_{j}$ for all $k, j=1,2, \ldots, m$.
- L_{k}, W_{k}, and E are envy-free divisions for all $k=1,2, \ldots, m-1$.
- If (x, d) is an envy-free division, then

$$
(x, d)=\sum_{k=1}^{m-1} \alpha_{k} L_{k}+\sum_{k=1}^{m-1} \beta_{k} W_{k}+\gamma E
$$

where

$$
\begin{aligned}
\alpha_{k} & =k \frac{\left(v_{k+1} x_{k+1}-d_{k+1}\right)-\left(v_{k+1} x_{k}-d_{k}\right)}{v_{k}-v_{k+1}} \\
\beta_{k} & =k \frac{\left(v_{k} x_{k}-d_{k}\right)-\left(v_{k} x_{k+1}-d_{k+1}\right)}{v_{k}-v_{k+1}} \\
\gamma & =m x_{m} .
\end{aligned}
$$

Seth Unruh's Proof

- The set of envy-free divisions is the intersection of the m^{2} half-spaces $x_{k} \geq 0$ and $v_{k} x_{k}-d_{k} \geq v_{k} x_{j}-d_{j}$ for all $k, j=1,2, \ldots, m$.
- L_{k}, W_{k}, and E are envy-free divisions for all $k=1,2, \ldots, m-1$.
- If (x, d) is an envy-free division, then

$$
(x, d)=\sum_{k=1}^{m-1} \alpha_{k} L_{k}+\sum_{k=1}^{m-1} \beta_{k} W_{k}+\gamma E
$$

where

$$
\begin{aligned}
\alpha_{k} & =k \frac{\left(v_{k+1} x_{k+1}-d_{k+1}\right)-\left(v_{k+1} x_{k}-d_{k}\right)}{v_{k}-v_{k+1}} \\
\beta_{k} & =k \frac{\left(v_{k} x_{k}-d_{k}\right)-\left(v_{k} x_{k+1}-d_{k+1}\right)}{v_{k}-v_{k+1}} \\
\gamma & =m x_{m} .
\end{aligned}
$$

- These $2 m-1$ divisions are affinely independent in a $2 m-2$ dimensional space.

Future Directions

Future Directions

$\equiv \quad \curvearrowleft Q \curvearrowright$

