Strategic Games, Theory, and Experiment

David Housman

Goshen College
March 2008

Games, Theory, and Experiment Outline

- Introduction
- Ordinal Preferences
- Dictator Game
- Ultimatum Game
- Ah or Blee
- Beauty Contest
- A Strange Auction
- MARPS
- Conclusion

Ordinal Preferences

Dividing $\$ 4.00$

Money to	
Self	Another
$\$ 0.00$	$\$ 0.00$
$\$ 0.00$	$\$ 4.00$
$\$ 0.50$	$\$ 3.50$
$\$ 1.00$	$\$ 3.00$
$\$ 1.50$	$\$ 2.50$
$\$ 2.00$	$\$ 2.00$
$\$ 2.50$	$\$ 1.50$
$\$ 3.00$	$\$ 1.00$
$\$ 3.50$	$\$ 0.50$
$\$ 4.00$	$\$ 0.00$

- Imagine that you have a choice of ten possible outcomes.

Dividing $\$ 4.00$

Money to	
Self	Another
$\$ 0.00$	$\$ 0.00$
$\$ 0.00$	$\$ 4.00$
$\$ 0.50$	$\$ 3.50$
$\$ 1.00$	$\$ 3.00$
$\$ 1.50$	$\$ 2.50$
$\$ 2.00$	$\$ 2.00$
$\$ 2.50$	$\$ 1.50$
$\$ 3.00$	$\$ 1.00$
$\$ 3.50$	$\$ 0.50$
$\$ 4.00$	$\$ 0.00$

- Imagine that you have a choice of ten possible outcomes.
- For each outcome, you will be given some money and another randomly chosen person in this audience will be given some money.

Ordinal Preferences

Money to		
Self	Another	Rank
$\$ 0.00$	$\$ 0.00$	
$\$ 0.00$	$\$ 4.00$	
$\$ 0.50$	$\$ 3.50$	
$\$ 1.00$	$\$ 3.00$	
$\$ 1.50$	$\$ 2.50$	
$\$ 2.00$	$\$ 2.00$	
$\$ 2.50$	$\$ 1.50$	
$\$ 3.00$	$\$ 1.00$	
$\$ 3.50$	$\$ 0.50$	
$\$ 4.00$	$\$ 0.00$	

- Preferences are a model for choice.

Ordinal Preferences

Money to		
Self	Another	Rank
$\$ 0.00$	$\$ 0.00$	
$\$ 0.00$	$\$ 4.00$	
$\$ 0.50$	$\$ 3.50$	
$\$ 1.00$	$\$ 3.00$	
$\$ 1.50$	$\$ 2.50$	
$\$ 2.00$	$\$ 2.00$	
$\$ 2.50$	$\$ 1.50$	
$\$ 3.00$	$\$ 1.00$	
$\$ 3.50$	$\$ 0.50$	
$\$ 4.00$	$\$ 0.00$	

- Preferences are a model for choice.
- If you could choose one of the ten outcomes, which would you choose? Give that outcome rank 1.

Ordinal Preferences

Money to		
Self	Another	Rank
$\$ 0.00$	$\$ 0.00$	
$\$ 0.00$	$\$ 4.00$	
$\$ 0.50$	$\$ 3.50$	
$\$ 1.00$	$\$ 3.00$	
$\$ 1.50$	$\$ 2.50$	
$\$ 2.00$	$\$ 2.00$	
$\$ 2.50$	$\$ 1.50$	
$\$ 3.00$	$\$ 1.00$	
$\$ 3.50$	$\$ 0.50$	
$\$ 4.00$	$\$ 0.00$	

- Preferences are a model for choice.
- If you could choose one of the ten outcomes, which would you choose? Give that outcome rank 1.
- If you could choose one of the nine unranked outcomes, which would you choose? Give that outcome rank 2.

Ordinal Preferences

Money to		
Self	Another	Rank
$\$ 0.00$	$\$ 0.00$	
$\$ 0.00$	$\$ 4.00$	
$\$ 0.50$	$\$ 3.50$	
$\$ 1.00$	$\$ 3.00$	
$\$ 1.50$	$\$ 2.50$	
$\$ 2.00$	$\$ 2.00$	
$\$ 2.50$	$\$ 1.50$	
$\$ 3.00$	$\$ 1.00$	
$\$ 3.50$	$\$ 0.50$	
$\$ 4.00$	$\$ 0.00$	

- Preferences are a model for choice.
- If you could choose one of the ten outcomes, which would you choose? Give that outcome rank 1.
- If you could choose one of the nine unranked outcomes, which would you choose? Give that outcome rank 2.
- Continue until all outcomes have been ranked.

Ordinal Preferences Results

Money to		Rank Motivation	
Self	Another	Self Other	Equity Self
$\$ 0.00$	$\$ 0.00$	10	2
$\$ 0.00$	$\$ 4.00$	9	10
$\$ 0.50$	$\$ 3.50$	8	8
$\$ 1.00$	$\$ 3.00$	7	6
$\$ 1.50$	$\$ 2.50$	6	4
$\$ 2.00$	$\$ 2.00$	5	1
$\$ 2.50$	$\$ 1.50$	4	3
$\$ 3.00$	$\$ 1.00$	3	5
$\$ 3.50$	$\$ 0.50$	2	7
$\$ 4.00$	$\$ 0.00$	1	9

- How many have ordinal preferences like those displayed?

Ordinal Preferences Results

Money to		Rank Motivation	
Self	Another	Self Other	Equity Self
$\$ 0.00$	$\$ 0.00$	10	2
$\$ 0.00$	$\$ 4.00$	9	10
$\$ 0.50$	$\$ 3.50$	8	8
$\$ 1.00$	$\$ 3.00$	7	6
$\$ 1.50$	$\$ 2.50$	6	4
$\$ 2.00$	$\$ 2.00$	5	1
$\$ 2.50$	$\$ 1.50$	4	3
$\$ 3.00$	$\$ 1.00$	3	5
$\$ 3.50$	$\$ 0.50$	2	7
$\$ 4.00$	$\$ 0.00$	1	9

- How many have ordinal preferences like those displayed?
- What is the distribution of first-place ranks?

Ordinal Preferences Results

Money to		Rank Motivation	
Self	Another	Self Other	Equity Self
$\$ 0.00$	$\$ 0.00$	10	2
$\$ 0.00$	$\$ 4.00$	9	10
$\$ 0.50$	$\$ 3.50$	8	8
$\$ 1.00$	$\$ 3.00$	7	6
$\$ 1.50$	$\$ 2.50$	6	4
$\$ 2.00$	$\$ 2.00$	5	1
$\$ 2.50$	$\$ 1.50$	4	3
$\$ 3.00$	$\$ 1.00$	3	5
$\$ 3.50$	$\$ 0.50$	2	7
$\$ 4.00$	$\$ 0.00$	1	9

- How many have ordinal preferences like those displayed?
- What is the distribution of first-place ranks?
- What is the distribution of ranks for the outcome in which both persons receive $\$ 0.00$?

Dictator Game

Dictator Game

- Dictator: Of \$4.00,

I offer _ to
another person and will keep the rest.

Dictator Game

- Dictator: Of \$4.00,

I offer to
another person and will keep the rest.

- Randomly chosen audience members will be the Dictator and other person.

Dictator Game

- Dictator: Of \$4.00, I offer__ to another person and will keep the rest.
- The dictator chooses how to divide $\$ 4.00$ with another person.
- Randomly chosen audience members will be the Dictator and other person.

Dictator Game

- Dictator: Of \$4.00,
\qquad another person and will keep the rest.
- Randomly chosen audience members will be the Dictator and other person.
- The dictator chooses how to divide $\$ 4.00$ with another person.
- The money is distributed as proposed.

Dictator Game

- Dictator: Of \$4.00,
\qquad another person and will keep the rest.
- Randomly chosen audience members will be the Dictator and other person.
- The dictator chooses how to divide $\$ 4.00$ with another person.
- The money is distributed as proposed.
- Play now!

Dictator Game Results

- Are your offers consistent with your ordinal preferences?

Dictator Game Results

- Are your offers consistent with your ordinal preferences?
- What is the distribution of offers?

Dictator Game Results

- With a self-interested dictator, the offer should be 0 .
- Are your offers consistent with your ordinal preferences?
- What is the distribution of offers?

Dictator Game Results

- Are your offers consistent with your ordinal preferences?
- What is the distribution of offers?
- With a self-interested dictator, the offer should be 0 .
- With an equity-interested dictator, the offer should be 50\%.

Dictator Game Results

- Are your offers consistent with your ordinal preferences?
- What is the distribution of offers?
- With a self-interested dictator, the offer should be 0 .
- With an equity-interested dictator, the offer should be 50\%.
- In a double-blind experiment, dictators offer 10% on average. Some altruism.

Dictator Game Results

- Are your offers consistent with your ordinal preferences?
- What is the distribution of offers?
- With a self-interested dictator, the offer should be 0 .
- With an equity-interested dictator, the offer should be 50\%.
- In a double-blind experiment, dictators offer 10% on average. Some altruism.
- Over many experiments, dictators offer 20% on average. Social acceptance a factor.

Dictator Game Results

- Are your offers consistent with your ordinal preferences?
- What is the distribution of offers?
- With a self-interested dictator, the offer should be 0 .
- With an equity-interested dictator, the offer should be 50\%.
- In a double-blind experiment, dictators offer 10% on average. Some altruism.
- Over many experiments, dictators offer 20% on average. Social acceptance a factor.
- Many dictators offer 0% and very few offer more than 50%.

Ultimatum Game

Ultimatum Game

- Proposer: Of \$4.00, I offer ___ to another person and will keep the rest.
- Responder: I will accept offers of \qquad greater.
- Randomly chosen audience members will be the Proposer and Responder.
- The Proposer chooses how to divide $\$ 4.00$ with another person.
- The Responder decides whether to accept or reject the offer.
- If the proposal is accepted, money is distributed as proposed.
- If the proposal is rejected, no money is distributed.
- Play now!

Ultimatum Game Results

- What was the distribution of offers?

Ultimatum Game Results

- What was the distribution of offers?
- With self-interested players, offers should be near 0 .

Ultimatum Game Results

- What was the distribution of offers?
- With self-interested players, offers should be near 0 .
- In experiments, modal and median offers are usually $40-50 \%$ and means are $30-40 \%$. Offers of less than 10% or more than 50% are rare.

Ultimatum Game Results

- What was the distribution of offers?
- With self-interested players, offers should be near 0 .
- In experiments, modal and median offers are usually $40-50 \%$ and means are $30-40 \%$. Offers of less than 10% or more than 50% are rare.
- Proposers are both altruistic/egalitarian and concerned about strategic risk.

Ultimatum Game Results

- What was the distribution of offers?
- With self-interested players, offers should be near 0 .
- In experiments, modal and median offers are usually $40-50 \%$ and means are $30-40 \%$. Offers of less than 10% or more than 50% are rare.
- Proposers are both altruistic/egalitarian and concerned about strategic risk.
- What was the distribution of minimal acceptable offers (MAO)?

Ultimatum Game Results

- What was the distribution of offers?
- With self-interested players, offers should be near 0 .
- In experiments, modal and median offers are usually $40-50 \%$ and means are $30-40 \%$. Offers of less than 10% or more than 50% are rare.
- Proposers are both altruistic/egalitarian and concerned about strategic risk.
- What was the distribution of minimal acceptable offers (MAO)?
- With self-interested players, MAO should be near 0.

Ultimatum Game Results

- What was the distribution of offers?
- With self-interested players, offers should be near 0 .
- In experiments, modal and median offers are usually $40-50 \%$ and means are $30-40 \%$. Offers of less than 10% or more than 50\% are rare.
- Proposers are both altruistic/egalitarian and concerned about strategic risk.
- What was the distribution of minimal acceptable offers (MAO)?
- With self-interested players, MAO should be near 0 .
- In experiments, offers of 40-50\% are rarely rejected and offers below 20% or so are rejected about half the time.

Ultimatum Game Results

- What was the distribution of offers?
- With self-interested players, offers should be near 0 .
- In experiments, modal and median offers are usually $40-50 \%$ and means are $30-40 \%$. Offers of less than 10% or more than 50% are rare.
- Proposers are both altruistic/egalitarian and concerned about strategic risk.
- What was the distribution of minimal acceptable offers (MAO)?
- With self-interested players, MAO should be near 0.
- In experiments, offers of $40-50 \%$ are rarely rejected and offers below 20% or so are rejected about half the time.
- So, self-interested players should make lower offers than found empirically.

Ultimatum Game Variation Results

- Repeated play reduces offers and rejections.

Ultimatum Game Variation Results

- Repeated play reduces offers and rejections.
- Increasing stakes (e.g., one month's salary) has very little effect.

Ultimatum Game Variation Results

- Repeated play reduces offers and rejections.
- Increasing stakes (e.g., one month's salary) has very little effect.
- Preschool children are self-interested, elementary school children are strict egalitarians, and middle school students are similar to adults.

Ultimatum Game Variation Results

- Repeated play reduces offers and rejections.
- Increasing stakes (e.g., one month's salary) has very little effect.
- Preschool children are self-interested, elementary school children are strict egalitarians, and middle school students are similar to adults.
- The average offer of University of Miami women students to attractive men was "hyperfair" (higher than 50\%).

Ultimatum Game Variation Results

- Repeated play reduces offers and rejections.
- Increasing stakes (e.g., one month's salary) has very little effect.
- Preschool children are self-interested, elementary school children are strict egalitarians, and middle school students are similar to adults.
- The average offer of University of Miami women students to attractive men was "hyperfair" (higher than 50\%).
- In a project comparing a dozen simple societies in remote places such as Papua New Guinea, the Amazon basin, and Africa shows some societies close to the self-interested prediction and others with many "hyperfair" offers. Average offers are strongly correlated with the degree of "market integration."

Ah or Blee

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."
- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chooses Ah.

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."
- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chooses Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."
- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chooses Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For example, if 6 players choose Ah and 14 players choose Blee, then an Ah player receives $6 \times \$ 0.50=\$ 3.00$ and a Blee player receives $\$ 3.00+\$ 5.00=\$ 8.00$.

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."
- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chooses Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For example, if 6 players choose Ah and 14 players choose Blee, then an Ah player receives $6 \times \$ 0.50=\$ 3.00$ and a Blee player receives $\$ 3.00+\$ 5.00=\$ 8.00$.
- A randomly chosen audience member will receive the money $s / h e$ is due.

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."
- If you choose Ah , then you will receive $a=\$ 0.50$ for each player who chooses Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For example, if 6 players choose Ah and 14 players choose Blee, then an Ah player receives $6 \times \$ 0.50=\$ 3.00$ and a Blee player receives $\$ 3.00+\$ 5.00=\$ 8.00$.
- A randomly chosen audience member will receive the money $s / h e$ is due.
- Play now!

Ah or Blee Theory

- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.

Ah or Blee Theory

- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.
- This is called the Prisoners' Dilemma.

Ah or Blee Theory

- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.
- This is called the Prisoners' Dilemma.
- There is no dilemma if

Ah or Blee Theory

- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.
- This is called the Prisoners' Dilemma.
- There is no dilemma if
- players are purely altruistic,

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.
- This is called the Prisoners' Dilemma.
- There is no dilemma if
- players are purely altruistic,
- there are mandates by an external authority, or

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.
- This is called the Prisoners' Dilemma.
- There is no dilemma if
- players are purely altruistic,
- there are mandates by an external authority, or
- there is repeated play.

Repeated Ah or Blee

- There are n players, all players receive a for each player who chooses Ah, and Blee players receive an additional bonus $b>a$.

Repeated Ah or Blee

- There are n players, all players receive a for each player who chooses Ah, and Blee players receive an additional bonus $b>a$.
- After each time we play, we play again with probability p.

Repeated Ah or Blee

- There are n players, all players receive a for each player who chooses Ah, and Blee players receive an additional bonus $b>a$.
- After each time we play, we play again with probability p.
- Suppose everyone agrees to choose Ah initially and as long as everyone else has chosen Ah. Otherwise, they will choose Blee.

Repeated Ah or Blee

- There are n players, all players receive a for each player who chooses Ah, and Blee players receive an additional bonus $b>a$.
- After each time we play, we play again with probability p.
- Suppose everyone agrees to choose Ah initially and as long as everyone else has chosen Ah. Otherwise, they will choose Blee.
- A player's expected payoff is

$$
n a+n a p+n a p^{2}+\cdots=\frac{n a}{1-p}
$$

Repeated Ah or Blee

- There are n players, all players receive a for each player who chooses Ah, and Blee players receive an additional bonus $b>a$.
- After each time we play, we play again with probability p.
- Suppose everyone agrees to choose Ah initially and as long as everyone else has chosen Ah. Otherwise, they will choose Blee.
- A player's expected payoff is

$$
n a+n a p+n a p^{2}+\cdots=\frac{n a}{1-p}
$$

- Can a player improve her payoff by choosing Blee?

Repeated Ah or Blee

- There are n players, all players receive a for each player who chooses Ah, and Blee players receive an additional bonus $b>a$.
- After each time we play, we play again with probability p.
- Suppose everyone agrees to choose Ah initially and as long as everyone else has chosen Ah. Otherwise, they will choose Blee.
- A player's expected payoff is

$$
n a+n a p+n a p^{2}+\cdots=\frac{n a}{1-p}
$$

- Can a player improve her payoff by choosing Blee?
- Her expected payoff is

$$
(n a-a+b)+b p+b p^{2}+\cdots=n a-a+\frac{b}{1-p}
$$

Repeated Ah or Blee

- There are n players, all players receive a for each player who chooses Ah, and Blee players receive an additional bonus $b>a$.
- After each time we play, we play again with probability p.
- Suppose everyone agrees to choose Ah initially and as long as everyone else has chosen Ah. Otherwise, they will choose Blee.
- A player's expected payoff is

$$
n a+n a p+n a p^{2}+\cdots=\frac{n a}{1-p}
$$

- Can a player improve her payoff by choosing Blee?
- Her expected payoff is

$$
(n a-a+b)+b p+b p^{2}+\cdots=n a-a+\frac{b}{1-p}
$$

- There is no incentive to deviate from the trigger strategy as long as

$$
p>\frac{b-a}{(n-1) a}
$$

Beauty Contest

Beauty Contest

- Each player will secretly write a number between 0 and 100 inclusive.

Beauty Contest

- Each player will secretly write a number between 0 and 100 inclusive.
- The median will be computed.

Beauty Contest

- Each player will secretly write a number between 0 and 100 inclusive.
- The median will be computed.
- The player whose number is closest to 70% of the median will win the prize.

Beauty Contest

- Each player will secretly write a number between 0 and 100 inclusive.
- The median will be computed.
- The player whose number is closest to 70% of the median will win the prize.
- Play now!

Beauty Contest

- Each player will secretly write a number between 0 and 100 inclusive.
- The median will be computed.
- The player whose number is closest to 70% of the median will win the prize.
- Play now!
- Find the distribution of guesses as well as the winner.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.
- If everyone thought the way I just thought, the median will be 17 . So, I should choose 12.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.
- If everyone thought the way I just thought, the median will be 17 . So, I should choose 12.
- This iterated process converges to 0 , the unique Nash equilibrium strategy.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.
- If everyone thought the way I just thought, the median will be 17 . So, I should choose 12.
- This iterated process converges to 0 , the unique Nash equilibrium strategy.
- But the reality is that not everyone thinks that deeply, and so I must think about how deeply my opponents will think.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.
- If everyone thought the way I just thought, the median will be 17 . So, I should choose 12.
- This iterated process converges to 0 , the unique Nash equilibrium strategy.
- But the reality is that not everyone thinks that deeply, and so I must think about how deeply my opponents will think.
- This is why stock market and housing bubbles persist even though everyone knows it will burst at some point.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.
- If everyone thought the way I just thought, the median will be 17 . So, I should choose 12.
- This iterated process converges to 0 , the unique Nash equilibrium strategy.
- But the reality is that not everyone thinks that deeply, and so I must think about how deeply my opponents will think.
- This is why stock market and housing bubbles persist even though everyone knows it will burst at some point.
- Should we play the game again?

Dollar Auction

A Strange Auction

- Open ascending bid auction for a prize.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.
- No one else pays.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.
- No one else pays.
- Play now!

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.
- No one else pays.
- Play now!
- Biological interpretation.

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.
- I know what the prize is worth to me but do not know what it is worth to you.

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.
- I know what the prize is worth to me but do not know what it is worth to you.
- $f(v)$ is the probability density the prize is worth v to a player.

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.
- I know what the prize is worth to me but do not know what it is worth to you.
- $f(v)$ is the probability density the prize is worth v to a player.
- $\beta(v)$ is a player's bid if the prize is worth v to him.

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.
- I know what the prize is worth to me but do not know what it is worth to you.
- $f(v)$ is the probability density the prize is worth v to a player.
- $\beta(v)$ is a player's bid if the prize is worth v to him.
- One player who values the prize at v thinks about changing his bid from $\beta(v)$ to b. His expected payoff is

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.
- I know what the prize is worth to me but do not know what it is worth to you.
- $f(v)$ is the probability density the prize is worth v to a player.
- $\beta(v)$ is a player's bid if the prize is worth v to him.
- One player who values the prize at v thinks about changing his bid from $\beta(v)$ to b. His expected payoff is

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume $\beta(v)$ is the player's payoff maximizing bid, that is,

$$
\pi(\beta(v)) \geq \pi(b)
$$

for all $b \geq 0$.

War of Attrition Maximization (1)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

War of Attrition Maximization (1)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

War of Attrition Maximization (1)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- Assume β is differentiable.

$$
\pi^{\prime}(b)=\frac{\left(v-\beta\left(\beta^{-1}(b)\right)\right) f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}-\left(1-F\left(\beta^{-1}(b)\right)\right)+\frac{b f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}
$$

War of Attrition Maximization (1)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- Assume β is differentiable.

$$
\pi^{\prime}(b)=\frac{\left(v-\beta\left(\beta^{-1}(b)\right)\right) f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}-\left(1-F\left(\beta^{-1}(b)\right)\right)+\frac{b f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}
$$

- Simplify.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

War of Attrition Maximization (1)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- Assume β is differentiable.

$$
\pi^{\prime}(b)=\frac{\left(v-\beta\left(\beta^{-1}(b)\right)\right) f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}-\left(1-F\left(\beta^{-1}(b)\right)\right)+\frac{b f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}
$$

- Simplify.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

War of Attrition Maximization (2)

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

War of Attrition Maximization (2)

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

- Solve for β^{\prime}.

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

War of Attrition Maximization (2)

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

- Solve for β^{\prime}.

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

- Solve for β.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

which is differentiable and increasing where $f(v)>0$.

War of Attrition Maximization (2)

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

- Solve for β^{\prime}.

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

- Solve for β.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

which is differentiable and increasing where $f(v)>0$.

- Verify we have found a maximum by substituting back into formula for $\pi^{\prime}(b)$.

$$
\pi^{\prime}(b)=\left(1-F\left(\beta^{-1}(b)\right)\left(v / \beta^{-1}(b)-1\right)\right.
$$

which is positive if $b<\beta(v)$ and negative if $b>\beta(v)$.

War of Attrition Maximization (3)

- Optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

War of Attrition Maximization (3)

- Optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} f(v) d u d v
$$

War of Attrition Maximization (3)

- Optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} f(v) d u d v
$$

- Interchange integrals.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \frac{u f(u)}{1-F(u)} \int_{u}^{\infty} f(v) d v d u
$$

War of Attrition Maximization (3)

- Optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} f(v) d u d v
$$

- Interchange integrals.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \frac{u f(u)}{1-F(u)} \int_{u}^{\infty} f(v) d v d u
$$

- The average bid equals the average value.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} u f(u) d u
$$

War of Attrition Maximization (3)

- Optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} f(v) d u d v
$$

- Interchange integrals.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \frac{u f(u)}{1-F(u)} \int_{u}^{\infty} f(v) d v d u
$$

- The average bid equals the average value.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} u f(u) d u
$$

- For some prize values v, the bid $\beta(v)$ is greater than the value!

MARPS

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.
- Rock smashes scissors (\$2 from scissors player to rock player).

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).
- Paper covers rock (\$1 from rock player to paper player) >

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).
- Paper covers rock (\$1 from rock player to paper player)>
- You receive the average playing against everyone else.

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).
- Paper covers rock (\$1 from rock player to paper player)>
- You receive the average playing against everyone else.
- Play now!

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.
- The two players simultaneously shout their choices.

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.
- The two players simultaneously shout their choices.
- Rock smashes scissors (\$2 from scissors player to rock player).

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.
- The two players simultaneously shout their choices.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.
- The two players simultaneously shout their choices.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).
- Paper covers rock (\$1 from rock player to paper player) >

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.
- The two players simultaneously shout their choices.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).
- Paper covers rock (\$1 from rock player to paper player) >
- Play it ten times with a single opponent now!

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.
- For self-interested players who only care about winning (and not by how much), rock $1 / 3$, paper $1 / 3$, and scissors $1 / 3$ is prudential and Nash.

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.
- For self-interested players who only care about winning (and not by how much), rock $1 / 3$, paper $1 / 3$, and scissors $1 / 3$ is prudential and Nash.
- But there is no incentive to mix properly if others are mixing properly.

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.
- For self-interested players who only care about winning (and not by how much), rock $1 / 3$, paper $1 / 3$, and scissors $1 / 3$ is prudential and Nash.
- But there is no incentive to mix properly if others are mixing properly.
- Players may be risk adverse or risk loving.

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.
- For self-interested players who only care about winning (and not by how much), rock $1 / 3$, paper $1 / 3$, and scissors $1 / 3$ is prudential and Nash.
- But there is no incentive to mix properly if others are mixing properly.
- Players may be risk adverse or risk loving.
- When asked to produce random sequences, people produce sequences that reliably deviate from random ones: too few long runs, too many alternations, and relative frequencies too close to event probabilities.

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.
- For self-interested players who only care about winning (and not by how much), rock $1 / 3$, paper $1 / 3$, and scissors $1 / 3$ is prudential and Nash.
- But there is no incentive to mix properly if others are mixing properly.
- Players may be risk adverse or risk loving.
- When asked to produce random sequences, people produce sequences that reliably deviate from random ones: too few long runs, too many alternations, and relative frequencies too close to event probabilities.
- Biological interpretation.

Conclusions

Conclusions

- Games are fun!

Conclusions

- Games are fun!
- Game theory can sometimes model the behavior of people, nations, animals, genes, or other agents.

Conclusions

- Games are fun!
- Game theory can sometimes model the behavior of people, nations, animals, genes, or other agents.
- Preference models are crucial.

Conclusions

- Games are fun!
- Game theory can sometimes model the behavior of people, nations, animals, genes, or other agents.
- Preference models are crucial.
- Experimental work is having a strong impact.

Conclusions

- Games are fun!
- Game theory can sometimes model the behavior of people, nations, animals, genes, or other agents.
- Preference models are crucial.
- Experimental work is having a strong impact.
- There is a lot more for us to learn!

Bibliography

- Colin F. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction, Princeton University Press, 2003.
- Rick Gillman and David Housman, Models of Conflict and Cooperation, unpublished manuscript, 2008.
- Herbert Gintis, Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction, Princeton University Press, 2000.
- Philip D. Straffin, Game Theory and Strategy, Mathematical Association of America, 1993.
- Alan D. Taylor, Mathematics and Politics: Strategy, Voting, Power and Proof, Springer-Verlag, 1995.
- http://www.goshen.edu/~ dhousman/research/ MAA2008StrategicGames.pdf for these slides

Cooperative Games

David Housman

Goshen College
March 2008

Cooperative Games Outline

- Introduction
- Coalition Game: Dividing $\$ 6.00$
- Bargaining Game: Time Share
- Fair Division Game: Bankruptcy
- Coalition Game: EPA
- Conclusion

Coalition Game: Dividing $\$ 6.00$

Dividing \$6.00

- Find a partner and decide who is player A and who is player B.

Dividing \$6.00

- Find a partner and decide who is player A and who is player B.
- Your goal is to come to an agreement over how to divide $\$ 6$ between the two of you.

Dividing \$6.00

- Find a partner and decide who is player A and who is player B.
- Your goal is to come to an agreement over how to divide $\$ 6$ between the two of you.
- If you cannot come to an agreement, then player A will obtain $\$ 1$ and player B will obtain \$3.

Dividing $\$ 6.00$

- Find a partner and decide who is player A and who is player B.
- Your goal is to come to an agreement over how to divide $\$ 6$ between the two of you.
- If you cannot come to an agreement, then player A will obtain $\$ 1$ and player B will obtain \$3.
- One pair will be randomly chosen to receive the agreed upon split or the no agreement payments.

Dividing \$6.00

- Find a partner and decide who is player A and who is player B.
- Your goal is to come to an agreement over how to divide $\$ 6$ between the two of you.
- If you cannot come to an agreement, then player A will obtain $\$ 1$ and player B will obtain \$3.
- One pair will be randomly chosen to receive the agreed upon split or the no agreement payments.
- The agreement must be in writing and signed by both players.

Dividing \$6.00

- Find a partner and decide who is player A and who is player B.
- Your goal is to come to an agreement over how to divide $\$ 6$ between the two of you.
- If you cannot come to an agreement, then player A will obtain $\$ 1$ and player B will obtain \$3.
- One pair will be randomly chosen to receive the agreed upon split or the no agreement payments.
- The agreement must be in writing and signed by both players.
- Play now!

Dividing \$6.00

- Find a partner and decide who is player A and who is player B.
- Your goal is to come to an agreement over how to divide $\$ 6$ between the two of you.
- If you cannot come to an agreement, then player A will obtain $\$ 1$ and player B will obtain \$3.
- One pair will be randomly chosen to receive the agreed upon split or the no agreement payments.
- The agreement must be in writing and signed by both players.
- Play now!
- How many pairs were unable to come to an agreement?

Dividing \$6.00

- Find a partner and decide who is player A and who is player B.
- Your goal is to come to an agreement over how to divide $\$ 6$ between the two of you.
- If you cannot come to an agreement, then player A will obtain $\$ 1$ and player B will obtain \$3.
- One pair will be randomly chosen to receive the agreed upon split or the no agreement payments.
- The agreement must be in writing and signed by both players.
- Play now!
- How many pairs were unable to come to an agreement?
- Notation: $w(A B)=6, w(A)=1, w(B)=3 \Longrightarrow x_{A}, x_{B}$?

Dividing \$6.00 Proportionately

$$
x_{i}=\frac{w(i)}{w(A)+w(B)} w(A B)
$$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=\frac{1}{1+3} 6=\$ 1.50, \quad x_{B}=\frac{3}{1+3} 6=\$ 4.50
$$

Dividing $\$ 6.00$ Proportionately

$$
x_{i}=\frac{w(i)}{w(A)+w(B)} w(A B)
$$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=\frac{1}{1+3} 6=\$ 1.50, \quad x_{B}=\frac{3}{1+3} 6=\$ 4.50
$$

- How many pairs agreed upon this split?

Dividing \$6.00 Proportionately

$$
x_{i}=\frac{w(i)}{w(A)+w(B)} w(A B)
$$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=\frac{1}{1+3} 6=\$ 1.50, \quad x_{B}=\frac{3}{1+3} 6=\$ 4.50
$$

- How many pairs agreed upon this split?
- Microsoft generates roughly $\$ 4$ billion in income every quarter. Housman generates roughly $\$ 0$ billion in income every month. Housman has a great idea that in collaboration with Microsoft will generate an additional $\$ 2$ billion in income for the partnership.

Dividing \$6.00 Proportionately

$$
x_{i}=\frac{w(i)}{w(A)+w(B)} w(A B)
$$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=\frac{1}{1+3} 6=\$ 1.50, \quad x_{B}=\frac{3}{1+3} 6=\$ 4.50
$$

- How many pairs agreed upon this split?
- Microsoft generates roughly $\$ 4$ billion in income every quarter. Housman generates roughly $\$ 0$ billion in income every month. Housman has a great idea that in collaboration with Microsoft will generate an additional $\$ 2$ billion in income for the partnership.
- For $w(M H)=6, w(M)=4, w(H)=0$,

$$
x_{M}=\frac{4}{4+0} 6=\$ 6, \quad x_{H}=\frac{0}{4+0} 6=\$ 0
$$

Dividing $\$ 6.00$ Equally

$$
x_{i}=\frac{1}{2} w(A B)
$$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=\frac{1}{2} 6=\$ 3.00, \quad x_{B}=\frac{1}{2} 6=\$ 3.00
$$

Dividing $\$ 6.00$ Equally

$$
x_{i}=\frac{1}{2} w(A B)
$$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=\frac{1}{2} 6=\$ 3.00, \quad x_{B}=\frac{1}{2} 6=\$ 3.00
$$

- How many pairs agreed upon this split?

Dividing $\$ 6.00$ Equally

$$
x_{i}=\frac{1}{2} w(A B)
$$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=\frac{1}{2} 6=\$ 3.00, \quad x_{B}=\frac{1}{2} 6=\$ 3.00
$$

- How many pairs agreed upon this split?
- For the Microsoft/Housman partnership

$$
\begin{aligned}
& w(M H)=6, w(M)=4, w(H)=0, \\
& \qquad x_{M}=\frac{1}{2} 6=\$ 3, \quad x_{H}=\frac{1}{2} 6=\$ 3
\end{aligned}
$$

Dividing the Surplus Equally

$$
x_{i}=w(i)+\frac{1}{2}(w(A B)-w(A)-w(B))
$$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=1+\frac{1}{2}(6-1-3)=\$ 2.00, \quad x_{B}=3+\frac{1}{2}(6-1-3)=\$ 4.00
$$

Dividing the Surplus Equally

$x_{i}=w(i)+\frac{1}{2}(w(A B)-w(A)-w(B))$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=1+\frac{1}{2}(6-1-3)=\$ 2.00, \quad x_{B}=3+\frac{1}{2}(6-1-3)=\$ 4.00
$$

- How many pairs agreed upon this split?

Dividing the Surplus Equally

$x_{i}=w(i)+\frac{1}{2}(w(A B)-w(A)-w(B))$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=1+\frac{1}{2}(6-1-3)=\$ 2.00, \quad x_{B}=3+\frac{1}{2}(6-1-3)=\$ 4.00
$$

- How many pairs agreed upon this split?
- For the Microsoft/Housman partnership

$$
\begin{aligned}
w(M H) & =6, w(M)=4, w(H)=0, \\
x_{M} & =4+\frac{1}{2}(6-4-0)=\$ 5, \quad x_{H}=0+\frac{1}{2}(6-4-0)=\$ 1
\end{aligned}
$$

Dividing the Surplus Equally

$x_{i}=w(i)+\frac{1}{2}(w(A B)-w(A)-w(B))$

- For $w(A B)=6, w(A)=1, w(B)=3$,

$$
x_{A}=1+\frac{1}{2}(6-1-3)=\$ 2.00, \quad x_{B}=3+\frac{1}{2}(6-1-3)=\$ 4.00
$$

- How many pairs agreed upon this split?
- For the Microsoft/Housman partnership

$$
\begin{aligned}
w(M H) & =6, w(M)=4, w(H)=0, \\
x_{M} & =4+\frac{1}{2}(6-4-0)=\$ 5, \quad x_{H}=0+\frac{1}{2}(6-4-0)=\$ 1
\end{aligned}
$$

- What were the other agreed upon splits?

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.
- Compensation: the child who has the fewest toys.

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.
- Compensation: the child who has the fewest toys.
- Reward: the child who worked hardest to fix and clean the flute.

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.
- Compensation: the child who has the fewest toys.
- Reward: the child who worked hardest to fix and clean the flute.
- Exogenous rights: the child whose father currently owns the flute.

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.
- Compensation: the child who has the fewest toys.
- Reward: the child who worked hardest to fix and clean the flute.
- Exogenous rights: the child whose father currently owns the flute.
- Fitness: the child who plays the flute most beautifully.

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.
- Compensation: the child who has the fewest toys.
- Reward: the child who worked hardest to fix and clean the flute.
- Exogenous rights: the child whose father currently owns the flute.
- Fitness: the child who plays the flute most beautifully.
- For $w(A B)=6, w(A)=1, w(B)=3$,

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.
- Compensation: the child who has the fewest toys.
- Reward: the child who worked hardest to fix and clean the flute.
- Exogenous rights: the child whose father currently owns the flute.
- Fitness: the child who plays the flute most beautifully.
- For $w(A B)=6, w(A)=1, w(B)=3$,
- A and B have exogenous rights to 1 and 3 , respectively. But who should receive the surplus of 2 ?

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.
- Compensation: the child who has the fewest toys.
- Reward: the child who worked hardest to fix and clean the flute.
- Exogenous rights: the child whose father currently owns the flute.
- Fitness: the child who plays the flute most beautifully.
- For $w(A B)=6, w(A)=1, w(B)=3$,
- A and B have exogenous rights to 1 and 3 , respectively. But who should receive the surplus of 2?
- Compensation: the poorer person.

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.
- Compensation: the child who has the fewest toys.
- Reward: the child who worked hardest to fix and clean the flute.
- Exogenous rights: the child whose father currently owns the flute.
- Fitness: the child who plays the flute most beautifully.
- For $w(A B)=6, w(A)=1, w(B)=3$,
- A and B have exogenous rights to 1 and 3 , respectively. But who should receive the surplus of 2 ?
- Compensation: the poorer person.
- Reward: the player who led the negotiation and wrote the contract.

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.
- Compensation: the child who has the fewest toys.
- Reward: the child who worked hardest to fix and clean the flute.
- Exogenous rights: the child whose father currently owns the flute.
- Fitness: the child who plays the flute most beautifully.
- For $w(A B)=6, w(A)=1, w(B)=3$,
- A and B have exogenous rights to 1 and 3 , respectively. But who should receive the surplus of 2 ?
- Compensation: the poorer person.
- Reward: the player who led the negotiation and wrote the contract.
- Fitness: the player who will make better use of the money.

Arbitration versus Negotiation

- Aristotle's Maxim: "Equals should be treated equally, and unequals unequally, in proportion to the relevant similarities, and differences."
- Plato's story: a flute must be given to one of four children.
- Compensation: the child who has the fewest toys.
- Reward: the child who worked hardest to fix and clean the flute.
- Exogenous rights: the child whose father currently owns the flute.
- Fitness: the child who plays the flute most beautifully.
- For $w(A B)=6, w(A)=1, w(B)=3$,
- A and B have exogenous rights to 1 and 3 , respectively. But who should receive the surplus of 2 ?
- Compensation: the poorer person.
- Reward: the player who led the negotiation and wrote the contract.
- Fitness: the player who will make better use of the money.
- Compensation/Reward/Fitness: equal split if there is nothing to distinguish the two players.

Bargaining Game: Time Share

Time Share

- Ten employees work in an office and share a radio from which they can listen to stations that play rock, jazz, or country music. Five employees like rock and hate jazz and country. Three employees like jazz and hate rock and country. Two employees like country and hate rock and jazz. How should the employer allocate time across the three stations?

Time Share

- Ten employees work in an office and share a radio from which they can listen to stations that play rock, jazz, or country music. Five employees like rock and hate jazz and country. Three employees like jazz and hate rock and country. Two employees like country and hate rock and jazz. How should the employer allocate time across the three stations?

Time Share

- Ten employees work in an office and share a radio from which they can listen to stations that play rock, jazz, or country music. Five employees like rock and hate jazz and country. Three employees like jazz and hate rock and country. Two employees like country and hate rock and jazz. How should the employer allocate time across the three stations?

		Payoffs									
Time	Employee	A	B	C	D	E	F	G	H	1	J
x	Rock	x	x	x	x	x	0	0	0	0	0
y	Jazz	0	0	0	0	0	y	y	y	0	0
z	Country	0	0	0	0	0	0	0	0	z	z

Time Share

- Ten employees work in an office and share a radio from which they can listen to stations that play rock, jazz, or country music. Five employees like rock and hate jazz and country. Three employees like jazz and hate rock and country. Two employees like country and hate rock and jazz. How should the employer allocate time across the three stations?

		Payoffs									
Time	Employee	A	B	C	D	E	F	G	H	I	J
x	Rock	x	x	x	x	x	0	0	0	0	0
y	Jazz	0	0	0	0	0	y	y	y	0	0
z	Country	0	0	0	0	0	0	0	0	z	z

- Utilitarian: maximize payoff sum $(1,0,0)$.

Time Share

- Ten employees work in an office and share a radio from which they can listen to stations that play rock, jazz, or country music. Five employees like rock and hate jazz and country. Three employees like jazz and hate rock and country. Two employees like country and hate rock and jazz. How should the employer allocate time across the three stations?

		Payoffs									
Time	Employee	A	B	C	D	E	F	G	H	I	J
x	Rock	x	x	x	x	x	0	0	0	0	0
y	Jazz	0	0	0	0	0	y	y	y	0	0
z	Country	0	0	0	0	0	0	0	0	z	z

- Utilitarian: maximize payoff sum $(1,0,0)$.
- Egalitarian: maximize the minimum payoff $(1 / 3,1 / 3,1 / 3)$.

Time Share

- Ten employees work in an office and share a radio from which they can listen to stations that play rock, jazz, or country music. Five employees like rock and hate jazz and country. Three employees like jazz and hate rock and country. Two employees like country and hate rock and jazz. How should the employer allocate time across the three stations?

		Payoffs									
Time	Employee	A	B	C	D	E	F	G	H	1	J
x	Rock	x	x	x	x	x	0	0	0	0	0
y	Jazz	0	0	0	0	0	y	y	y	0	0
z	Country	0	0	0	0	0	0	0	0	z	z

- Utilitarian: maximize payoff sum $(1,0,0)$.
- Egalitarian: maximize the minimum payoff $(1 / 3,1 / 3,1 / 3)$.
- Nash: maximize the product of the payoffs ($5 / 10,3 / 10,2 / 10$).

Time Share

- Ten employees work in an office and share a radio from which they can listen to stations that play rock, jazz, or country music. Five employees like rock and hate jazz and country. Three employees like jazz and hate rock and country. Two employees like country and hate rock and jazz. How should the employer allocate time across the three stations?

		Payoffs									
Time	Employee	A	B	C	D	E	F	G	H	1	J
x	Rock	x	x	x	x	x	0	0	0	0	0
y	Jazz	0	0	0	0	0	y	y	y	0	0
z	Country	0	0	0	0	0	0	0	0	z	z

- Utilitarian: maximize payoff sum $(1,0,0)$.
- Egalitarian: maximize the minimum payoff $(1 / 3,1 / 3,1 / 3)$.
- Nash: maximize the product of the payoffs (5/10,3/10, 2/10).
- Lifeboat and Reviewer variations.

Fair Division Game: Bankruptcy

Bankruptcy

- Divide yourselves into groups of three, and decide who will be player A, player B, and player C.

Bankruptcy

- Divide yourselves into groups of three, and decide who will be player A, player B, and player C.
- The Housman Company has declared itself bankrupt. It has $\$ 6$ in assets remaining. Players A, B, and C are owed \$3, \$6, and \$9, respectively.

Bankruptcy

- Divide yourselves into groups of three, and decide who will be player A, player B, and player C.
- The Housman Company has declared itself bankrupt. It has $\$ 6$ in assets remaining. Players A, B, and C are owed \$3, \$6, and \$9, respectively.
- Your goal is to come to an agreement over how to divide $\$ 6$ among the three of you.

Bankruptcy

- Divide yourselves into groups of three, and decide who will be player A, player B, and player C.
- The Housman Company has declared itself bankrupt. It has $\$ 6$ in assets remaining. Players A, B, and C are owed $\$ 3, \$ 6$, and $\$ 9$, respectively.
- Your goal is to come to an agreement over how to divide $\$ 6$ among the three of you.
- If you cannot come to an agreement, then the $\$ 6$ pays for legal fees and each player receives $\$ 0$.

Bankruptcy

- Divide yourselves into groups of three, and decide who will be player A, player B, and player C.
- The Housman Company has declared itself bankrupt. It has $\$ 6$ in assets remaining. Players A, B, and C are owed $\$ 3, \$ 6$, and $\$ 9$, respectively.
- Your goal is to come to an agreement over how to divide $\$ 6$ among the three of you.
- If you cannot come to an agreement, then the $\$ 6$ pays for legal fees and each player receives $\$ 0$.
- One group will be randomly chosen to receive the agreed upon split or the no agreement payments.

Bankruptcy

- Divide yourselves into groups of three, and decide who will be player A, player B, and player C.
- The Housman Company has declared itself bankrupt. It has $\$ 6$ in assets remaining. Players A, B, and C are owed $\$ 3, \$ 6$, and $\$ 9$, respectively.
- Your goal is to come to an agreement over how to divide $\$ 6$ among the three of you.
- If you cannot come to an agreement, then the $\$ 6$ pays for legal fees and each player receives $\$ 0$.
- One group will be randomly chosen to receive the agreed upon split or the no agreement payments.
- The agreement must be in writing and signed by all three players.

Bankruptcy

- Divide yourselves into groups of three, and decide who will be player A, player B, and player C.
- The Housman Company has declared itself bankrupt. It has $\$ 6$ in assets remaining. Players A, B, and C are owed $\$ 3, \$ 6$, and $\$ 9$, respectively.
- Your goal is to come to an agreement over how to divide $\$ 6$ among the three of you.
- If you cannot come to an agreement, then the $\$ 6$ pays for legal fees and each player receives $\$ 0$.
- One group will be randomly chosen to receive the agreed upon split or the no agreement payments.
- The agreement must be in writing and signed by all three players.
- Play now!

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00
Proportional Split	1.00	2.00	3.00

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00
Proportional Split	1.00	2.00	3.00
Equal Loss Split	0.00	1.50	4.50

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00
Proportional Split	1.00	2.00	3.00
Equal Loss Split	0.00	1.50	4.50
Talmudic Split	1.50	2.25	2.25

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00
Proportional Split	1.00	2.00	3.00
Equal Loss Split	0.00	1.50	4.50
Talmudic Split	1.50	2.25	2.25

A mishna (a short statement of the law) from the Babylonan Talmud (a collection of Jewish religious and legal decisions set down during the first five centuries A.D.) . . .

Wife \longrightarrow	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00
Proportional Split	1.00	2.00	3.00
Equal Loss Split	0.00	1.50	4.50
Talmudic Split	1.50	2.25	2.25

A mishna (a short statement of the law) from the Babylonan Talmud (a collection of Jewish religious and legal decisions set down during the first five centuries A.D.) . . .

Wife \longrightarrow	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00	1.00	1.00	1.00

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00
Proportional Split	1.00	2.00	3.00
Equal Loss Split	0.00	1.50	4.50
Talmudic Split	1.50	2.25	2.25

A mishna (a short statement of the law) from the Babylonan Talmud (a collection of Jewish religious and legal decisions set down during the first five centuries A.D.) . . .

Wife \longrightarrow	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
E 3.00	1.00	1.00	1.00

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00
Proportional Split	1.00	2.00	3.00
Equal Loss Split	0.00	1.50	4.50
Talmudic Split	1.50	2.25	2.25

A mishna (a short statement of the law) from the Babylonan Talmud (a collection of Jewish religious and legal decisions set down during the first five centuries A.D.) . . .

Wife \longrightarrow	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00	1.00	1.00	1.00
6.00	1.50	2.25	2.25

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00
Proportional Split	1.00	2.00	3.00
Equal Loss Split	0.00	1.50	4.50
Talmudic Split	1.50	2.25	2.25

A mishna (a short statement of the law) from the Babylonan Talmud (a collection of Jewish religious and legal decisions set down during the first five centuries A.D.) . . .

Wife \longrightarrow	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
Equal split?			
3.00	1.00	1.00	1.00
6.00	1.50	2.25	2.25
What is this?			

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00
Proportional Split	1.00	2.00	3.00
Equal Loss Split	0.00	1.50	4.50
Talmudic Split	1.50	2.25	2.25

A mishna (a short statement of the law) from the Babylonan Talmud (a collection of Jewish religious and legal decisions set down during the first five centuries A.D.) . . .

Wife \longrightarrow	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00	1.00	1.00	1.00
Equal split?			
	1.50	2.25	2.25
9.00	1.50	3.00	4.50

Bankruptcy Results

Player	A	B	C
Owed	3.00	6.00	9.00
Equal Split	2.00	2.00	2.00
Proportional Split	1.00	2.00	3.00
Equal Loss Split	0.00	1.50	4.50
Talmudic Split	1.50	2.25	2.25

A mishna (a short statement of the law) from the Babylonan Talmud (a collection of Jewish religious and legal decisions set down during the first five centuries A.D.) . . .

Wife \longrightarrow	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00	1.00	1.00	1.00
6.00	1.50	2.25	2.25
9.00	1.50	3.00	4.50

Talmudic Law of Contracts

- Two hold a garment; one claims it all, the other claims half. What is the equitable division of the garment?

Talmudic Law of Contracts

- Two hold a garment; one claims it all, the other claims half. What is the equitable division of the garment?
- Equal Split: Each has some claim, so give each half.

Talmudic Law of Contracts

- Two hold a garment; one claims it all, the other claims half. What is the equitable division of the garment?
- Equal Split: Each has some claim, so give each half.
- Proportional Split: The first claims twice as much as the second, so give the first twice as much $(2 / 3$ of the garment) as the second $(1 / 3$ of the garment).

Talmudic Law of Contracts

- Two hold a garment; one claims it all, the other claims half. What is the equitable division of the garment?
- Equal Split: Each has some claim, so give each half.
- Proportional Split: The first claims twice as much as the second, so give the first twice as much $(2 / 3$ of the garment) as the second $(1 / 3$ of the garment).
- Equal Loss Split: Give $3 / 4$ to the first and $1 / 4$ to the second so that each has lost $1 / 4$ of the garment.

Talmudic Law of Contracts

- Two hold a garment; one claims it all, the other claims half. What is the equitable division of the garment?
- Equal Split: Each has some claim, so give each half.
- Proportional Split: The first claims twice as much as the second, so give the first twice as much $(2 / 3$ of the garment) as the second $(1 / 3$ of the garment).
- Equal Loss Split: Give $3 / 4$ to the first and $1 / 4$ to the second so that each has lost $1 / 4$ of the garment.
- Talmudic Split: The second has conceded half to the first and the remaining half should be split equally, so $3 / 4$ to the first and $1 / 4$ to the second.

Talmudic Split Applied Consistently

Player	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00

Talmudic Split Applied Consistently

Player	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00		1.00	1.00

Talmudic Split Applied Consistently

Player	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
No concessions			
3.00	1.00	1.00	1.00
6.00	1.50	2.25	2.25
A concedes 0.75 to B			

Talmudic Split Applied Consistently

Player	A	B	C	
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00	
3.00	1.00	1.00	1.00	No concessions
6.00	1.50	2.25	2.25	A concedes 0.75 to B
9.00	1.50	3.00	4.50	A concedes 1.50 to B

Talmudic Split Applied Consistently

Player	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00	1.00	1.00	1.00
6.00	1.50	2.25	2.25
9.00	1.50	3.00	4.50

No concessions A concedes 0.75 to B A concedes 1.50 to B
B concedes 1.50 to C

Talmudic Split Applied Consistently

Player	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00	1.00	1.00	1.00
6.00	1.50	2.25	2.25
9.00	1.50	3.00	4.50

No concessions
A concedes 0.75 to B
A concedes 1.50 to B
B concedes 1.50 to C

6.00	x	y	z

Talmudic Split Applied Consistently

Player	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00	1.00	1.00	1.00
6.00	1.50	2.25	2.25
9.00	1.50	3.00	4.50

No concessions A concedes 0.75 to B A concedes 1.50 to B B concedes 1.50 to C

6.00	x	y	z

- Clearly, $x+y+z=6$ and $0 \leq x \leq y \leq z$.

Talmudic Split Applied Consistently

Player	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00	1.00	1.00	1.00
6.00	1.50	2.25	2.25
9.00	1.50	3.00	4.50

No concessions A concedes 0.75 to B A concedes 1.50 to B B concedes 1.50 to C

6.00	x	y	z

- Clearly, $x+y+z=6$ and $0 \leq x \leq y \leq z$.
- Since $y+z \leq 6$, neither B nor C concedes anything. Thus, $y=z$.

Talmudic Split Applied Consistently

Player	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00	1.00	1.00	1.00
6.00	1.50	2.25	2.25
9.00	1.50	3.00	4.50

No concessions A concedes 0.75 to B A concedes 1.50 to B B concedes 1.50 to C

6.00	x	y	z

- Clearly, $x+y+z=6$ and $0 \leq x \leq y \leq z$.
- Since $y+z \leq 6$, neither B nor C concedes anything. Thus, $y=z$.
- So, $x+2 y=6$ implies $y=3-x / 2$ implies $x+y=3+x / 2$ implies A concedes $x / 2$.

Talmudic Split Applied Consistently

Player	A	B	C
Assets \downarrow Owed \longrightarrow	3.00	6.00	9.00
3.00	1.00	1.00	1.00
6.00	1.50	2.25	2.25
9.00	1.50	3.00	4.50

No concessions A concedes 0.75 to B A concedes 1.50 to B B concedes 1.50 to C

6.00	x	y	z

- Clearly, $x+y+z=6$ and $0 \leq x \leq y \leq z$.
- Since $y+z \leq 6$, neither B nor C concedes anything. Thus, $y=z$.
- So, $x+2 y=6$ implies $y=3-x / 2$ implies $x+y=3+x / 2$ implies A concedes $x / 2$.
- Since B concedes nothing to $A, x=3 / 2$ and $z=y=3-3 / 4$.

Coalition Game: EPA Game

EPA Game

- Divide yourselves into groups of four, and decide who will be player A , player B, player C, and player D.

EPA Game

- Divide yourselves into groups of four, and decide who will be player A, player B, player C, and player D.
- The Environmental Protection Agency has mandated improvements in the sewage treatment facilities in the cities of Avon, Barport, Claron, and Delmont. Each city could work separately, but $\$ 140$ million would be saved by all four working together. If one of the cities was unwilling to cooperate, some other groups of cities could also save money as summarized in the table.

Coalition	ABCD	ABC	ABD	ACD	AB	any other
Savings	140	108	96	84	24	0

EPA Game

- Divide yourselves into groups of four, and decide who will be player A, player B, player C, and player D.
- The Environmental Protection Agency has mandated improvements in the sewage treatment facilities in the cities of Avon, Barport, Claron, and Delmont. Each city could work separately, but $\$ 140$ million would be saved by all four working together. If one of the cities was unwilling to cooperate, some other groups of cities could also save money as summarized in the table.

Coalition	ABCD	ABC	ABD	ACD	AB	any other
Savings	140	108	96	84	24	0

- Your goal is to come to a written and signed agreement.

EPA Game

- Divide yourselves into groups of four, and decide who will be player A, player B, player C, and player D.
- The Environmental Protection Agency has mandated improvements in the sewage treatment facilities in the cities of Avon, Barport, Claron, and Delmont. Each city could work separately, but $\$ 140$ million would be saved by all four working together. If one of the cities was unwilling to cooperate, some other groups of cities could also save money as summarized in the table.

Coalition	ABCD	ABC	ABD	ACD	AB	any other
Savings	140	108	96	84	24	0

- Your goal is to come to a written and signed agreement.
- One group will be randomly chosen to receive the agreed upon amounts (divided by $\$ 10$ million).

EPA Game

- Divide yourselves into groups of four, and decide who will be player A, player B, player C, and player D.
- The Environmental Protection Agency has mandated improvements in the sewage treatment facilities in the cities of Avon, Barport, Claron, and Delmont. Each city could work separately, but $\$ 140$ million would be saved by all four working together. If one of the cities was unwilling to cooperate, some other groups of cities could also save money as summarized in the table.

Coalition	ABCD	ABC	ABD	ACD	AB	any other
Savings	140	108	96	84	24	0

- Your goal is to come to a written and signed agreement.
- One group will be randomly chosen to receive the agreed upon amounts (divided by $\$ 10$ million).
- Play now!

Shapley: Seeking Simplicity

Coalition	G1		G2		G3		G4		G5		EPA
ABCD	24		84		72		84		124		140
ABC	24		0		0		84		0		108
ABD	24		0		72		0		0		96
ACD	0		84		0		0		0		84
AB	24		0		0		0		0		24
anything else	0		0		0		0		0		0
Player	A1		A2		A3		A4		A5		EPA
A											
B											
C											
D											

Shapley: Efficient \& Unbiased

Coalition	G1		G2		G3		G4		G5		EPA
ABCD	24		84		72		84		124		140
ABC	24		0		0		84		0		108
ABD	24		0		72		0		0		96
ACD	0		84		0		0		0		84
AB	24		0		0		0		0		24
anything else	0		0		0		0		0		0
Player	A1		A2		A3		A4		A5		EPA
A									31		
B									31		
C									31		
D									31		

Shapley: Efficient, Unbiased, \& Subsidy Free

Coalition	G1		G2		G3		G4		G5		EPA
ABCD	24		84		72		84		124		140
ABC	24		0		0		84		0		108
ABD	24		0		72		0		0		96
ACD	0		84		0		0		0		84
AB	24		0		0		0		0		24
anything else	0		0		0		0		0		0
Player	A1		A2		A3		A4		A5		EPA
A	12		28		24		28		31		
B	12		0		24		28		31		
C	0		28		0		28		31		
D	0		28		24		0		31		

Shapley: Efficient, Unbiased, Subsidy Free, \& Additive

Coalition	G1		G2		G3		G4		G5		EPA
ABCD	24	+	84	+	72	+	84	-	124	$=$	140
ABC	24	+	0	+	0	+	84	-	0	$=$	108
ABD	24	+	0	+	72	+	0	-	0	$=$	96
ACD	0	+	84	+	0	+	0	-	0	$=$	84
AB	24	+	0	+	0	+	0	-	0	$=$	24
anything else	0	+	0	+	0	+	0	-	0	$=$	0
Player	A1		A2		A3		A4		A5		EPA
A	12	+	28	+	24	+	28	-	31	$=$	61
B	12	+	0	+	24	+	28	-	31	$=$	33
C	0	+	28	+	0	+	28	-	31	$=$	25
D	0	+	28	+	24	+	0	-	31	$=$	21

Shapley: Not Consistent with Renegotiation

Coalition	EPA
ABCD	140
ABC	108
ABD	96
ACD	84
AB	24
anything else	0
Player	Shapley
A	61
B	33
C	25
D	21

Shapley: Not Consistent with Renegotiation

Coalition	EPA
ABCD	140
ABC	108
ABD	96
ACD	84
AB	24
anything else	0
Player	Shapley
A	61
B	33
C	25
D	21

Suppose C and D are satisfied but A and B want to renegotiate.

Shapley: Not Consistent with Renegotiation

Coalition	EPA
ABCD	140
ABC	108
ABD	96
ACD	84
AB	24
anything else	0
Player	Shapley
A	61
B	33
C	25
D	21

Suppose C and D are satisfied but A and B want to renegotiate.

Coalition	EPA
AB	$61+33=94$
A	$84-25-21=38$
B	0

Shapley: Not Consistent with Renegotiation

Coalition	EPA
ABCD	140
ABC	108
ABD	96
ACD	84
AB	24
anything else	0
Player	Shapley
A	61
B	33
C	25
D	21

Suppose C and D are satisfied but A and B want to renegotiate.

Coalition	EPA
AB	$61+33=94$
A	$84-25-21=38$
B	0
Player	Shapley
A	$38+\frac{1}{2} 56=68$
B	$0+\frac{1}{2} 56=28$

Shapley: Not Consistent with Renegotiation

Coalition	EPA
ABCD	140
ABC	108
ABD	96
ACD	84
AB	24
anything else	0
Player	Shapley
A	61
B	33
C	25
D	21

Suppose C and D are satisfied but A and B want to renegotiate.

Coalition	EPA
AB	$61+33=94$
A	$84-25-21=38$
B	0
Player	Shapley
A	$38+\frac{1}{2} 56=68$
B	$0+\frac{1}{2} 56=28$

The renegotiation changes the recommended payoffs.

Nucleolus: Consistent with Renegotiation

Coalition	EPA
ABCD	140
ABC	108
ABD	96
ACD	84
AB	24
anything else	0

Player	Nucleolus
A	a
B	b
C	c
D	d

Nucleolus: Consistent with Renegotiation

A and B renegotiation:

Coalition	EPA
ABCD	140
ABC	108
ABD	96
ACD	84
AB	24
anything else	0

Coalition	Gain
AB	$a+b$
A	$84-c-d$
B	0

Player	Nucleolus
A	a
B	b
C	c
D	d

Nucleolus: Consistent with Renegotiation

A and B renegotiation:

Coalition	EPA
ABCD	140
ABC	108
ABD	96
ACD	84
AB	24
anything else	0

Coalition	Gain
AB	$a+b$
A	$84-c-d$
B	0

Consistency requires

$$
\begin{aligned}
b & =0+\frac{1}{2}(a+b-(84-c-d)-0) \\
2 b & =a+b+c+d-84 \\
b & =(140-84) / 2=28
\end{aligned}
$$

Nucleolus: Consistent with Renegotiation

A and B renegotiation:

Coalition	EPA
ABCD	140
ABC	108
ABD	96
ACD	84
AB	24
anything else	0
Player	Nucleolus
A	a
B	b
C	c
D	d

Coalition	Gain
AB	$a+b$
A	$84-c-d$
B	0

Consistency requires

$$
\begin{aligned}
b & =0+\frac{1}{2}(a+b-(84-c-d)-0) \\
2 b & =a+b+c+d-84 \\
b & =(140-84) / 2=28
\end{aligned}
$$

Consistency of A\&C and A\&D renegotiations imply the nucleolus is ($74,28,22,16$).

You Can't Always Get What You Want (1)

Coalition	EPA	EPA2
ABCD	140	120
ABC	108	108
ABD	96	96
ACD	84	84
AB	24	24
anything else	0	0
Player	Shapley	Shapley
A	61	56
B	33	28
C	25	20
D	21	16

You Can't Always Get What You Want (1)

Coalition	EPA	EPA2
ABCD	140	120
ABC	108	108
ABD	96	96
ACD	84	84
AB	24	24
anything else	0	0
Player	Shapley	Shapley
A	61	56
B	33	28
C	25	20
D	21	16

- But $56+28+20<108$.

You Can't Always Get What You Want (1)

Coalition	EPA	EPA2
ABCD	140	120
ABC	108	108
ABD	96	96
ACD	84	84
AB	24	24
anything else	0	0
Player	Shapley	Shapley
A	61	56
B	33	28
C	25	20
D	21	16

- But $56+28+20<108$.
- Shapley is not always coalition rational.

You Can't Always Get What You Want (2)

Coalition	EPA	EPA2
ABCD	140	120
ABC	108	108
ABD	96	96
ACD	84	84
AB	24	24
anything else	0	0

Player	Nucleolus	Nucleolus

A	74	84
B	28	18
C	22	12
D	16	6

You Can't Always Get What You Want (2)

- But $74<84$.

Coalition	EPA	EPA2
ABCD	140	120
ABC	108	108
ABD	96	96
ACD	84	84
AB	24	24
anything else	0	0
Player	Nucleolus	Nucleolus
A	74	84
B	28	18
C	22	12
D	16	6

You Can't Always Get What You Want (2)

- But $74<84$.

Coalition	EPA	EPA2
ABCD	140	120
ABC	108	108
ABD	96	96
ACD	84	84
AB	24	24
anything else	0	0

- Nucleolus is not always coalition monotone.

You Can't Always Get What You Want (2)

- But $74<84$.

Coalition	EPA	EPA2
ABCD	140	120
ABC	108	108
ABD	96	96
ACD	84	84
AB	24	24
anything else	0	0

Player	Nucleolus	Nucleolus
A	74	84
B	28	18
C	22	12
D	16	6

- Nucleolus is not always coalition monotone.
- Shapley is coalition monotone but not always coalition rational.

You Can't Always Get What You Want (2)

- But $74<84$.

Coalition	EPA	EPA2
ABCD	140	120
ABC	108	108
ABD	96	96
ACD	84	84
AB	24	24
anything else	0	0

Player	Nucleolus	Nucleolus
A	74	84
B	28	18
C	22	12
D	16	6

- Nucleolus is not always coalition monotone.
- Shapley is coalition monotone but not always coalition rational.
- Nucleolus is coalition rational but not always coalition monotone.

You Can't Always Get What You Want (2)

- But $74<84$.

Coalition	EPA	EPA2
ABCD	140	120
ABC	108	108
ABD	96	96
ACD	84	84
AB	24	24
anything else	0	0

Player	Nucleolus	Nucleolus
A	74	84
B	28	18
C	22	12
D	16	6

- Nucleolus is not always coalition monotone.
- Shapley is coalition monotone but not always coalition rational.
- Nucleolus is coalition rational but not always coalition monotone.
- Theorem. There is no allocation method that is always efficient, coalition rational, and coalition monotone.

Conclusions

Conclusions

- Games are fun!

Conclusions

- Games are fun!
- Axiomatics is applied math!

Conclusions

- Games are fun!
- Axiomatics is applied math!
- There is a lot more for us to learn!

Bibliography

- Colin F. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction, Princeton University Press, 2003.
- Rick Gillman and David Housman, Models of Conflict and Cooperation, unpublished manuscript, 2008.
- David Housman and Lori Clark, "Core and monotonic allocation methods," International Journal of Game Theory, 2001, 30, 377-404.
- Hervé Moulin, Fair Division and Collective Welfare, MIT Press, 2003.
- H. Peyton Young, Equity in Theory and Practice, Princeton University Press, 1994.
- http://www.goshen.edu/~ dhousman/research/ MAA2008CooperativeGames.pdf for these slides.

