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Preview

Coalition versus partition games and values

Values

Weighted marginal sum values
Dispersion values
Apex values
Summary values

Properties

E¢ cient, symmetric, dummy, and linear
Monotone
Dummy independence
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Games

De�nition (Coalition Game)
Players N and a real-valued
function w on C =
fS : ∅ 6= S � Ng.

Example
S w(S)
ABC 24
AB 18
AC 18
BC 18
A 12
B 0
C 0

De�nition (Partition Game)
Players N and a real-valued function w on
E = f(S ;P) : S 2 Cn and P 2 P (NnS)g.

Example
S ;P w(S ;P)
ABC ;∅ 24
AB;C 18
AC ;B 18
BC ;A 18
A;B,C 12
B;A,C 6
C ;B,C 0
A;BC 0
B ;AC 0
C ;AB 0

Housman (GAMES 2008) Values for Partition Function Form Games July 2008 (a work in progress) 3 / 19



Games

De�nition (Coalition Game)
Players N and a real-valued
function w on C =
fS : ∅ 6= S � Ng.

Example
S w(S)
ABC 24
AB 18
AC 18
BC 18
A 12
B 0
C 0

De�nition (Partition Game)
Players N and a real-valued function w on
E = f(S ;P) : S 2 Cn and P 2 P (NnS)g.

Example
S ;P w(S ;P)
ABC ;∅ 24
AB;C 18
AC ;B 18
BC ;A 18
A;B,C 12
B;A,C 6
C ;B,C 0
A;BC 0
B ;AC 0
C ;AB 0

Housman (GAMES 2008) Values for Partition Function Form Games July 2008 (a work in progress) 3 / 19



Shapley Values
Symmetric Weighted Sum of Marginals

For 3-player coalition games:

φA (w) = c(0) (w (ABC )� w (BC ))
+ c(1) (w (AB)� w (B))
+ c(1) (w (AC )� w (C ))
+ c(2) w (A)

For 3-player partition games

φA (w) = c(∅; 0) (w (ABC ;∅)� w (BC ;A))
+ c(1; 1) (w (AB ;C )� w (B;AC ))
+ c(1; 0) (w (AB ;C )� w (B;A,C ))
+ c(1; 1) (w (AC ;B)� w (C ;AB))
+ c(1; 0) (w (AC ;B)� w (C ;A,B))
+ c(2) w (A;BC )
+ c(1, 1) w (A;B,C )
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Shapley Values
E¢ cient and Symmetric Weighted Sum of Marginals

For 3-player coalition games:

φA (w) = 1
3 (w (ABC )� w (BC ))

+ 1
6 (w (AB)� w (B))

+ 1
6 (w (AC )� w (C ))

+ 1
3 w (A)

For 3-player partition games

φA (w) = 1
3 (w (ABC ;∅)� w (BC ;A))

+ c(1; 1) (w (AB ;C )� w (B;AC ))
+ ( 16 � c(1; 1)) (w (AB ;C )� w (B;A,C ))
+ c(1; 1) (w (AC ;B)� w (C ;AB))
+ ( 16 � c(1; 1)) (w (AC ;B)� w (C ;A,B))
+ 2c(1; 1) w (A;BC )
+ ( 13 � 2c(1; 1)) w (A;B,C )

c(1; 1) = φA (w) if w (ABC ;∅) = w (BC ;A) = w (AB;C ) = 1.
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Shapley Values
For 5-player partition games

φA (w) = 1
5 (w (ABCDE ;∅)� w (BCDE ;A))

+ c(1; 1) (w (ABCD;E )� w (BCD;AE ))
� � �
+ c(2; 2) (w (ABC ;DE )� w (BC ;ADE ))
� � �
+ c(1, 1; 1) (w (ABC ;D,E )� w(BC ;AD,E ))
� � �
+ c(3; 3) (w (AB ;CDE )� w(B;ACDE ))
� � �
+ c(2, 1; 2) (w (AB ;CD,E )� w(B;ACD,E ))
� � �
+ c(2, 1; 1) (w (AB ;CD,E )� w(B;CD,AE ))
� � �
+ c(1, 1, 1; 1) (w (AB ;C ,D,E )� w(B;AC ,D,E ))
� � �

In 3, 4, and 5 player games, there are 1, 3, and 7 parameters.

Housman (GAMES 2008) Values for Partition Function Form Games July 2008 (a work in progress) 6 / 19



Shapley Values
E¢ cient and Symmetric Weighted Sum of Marginals

For coalition games:

Shi (w) = ∑
S2Cn :i2S

(jS j�1)!(n�jS j)!
n! (w (S)� w (Sn fig))

For partition games

φci (w) = ∑
(S ;P )

∑
R2P[f∅g

cn (kPk ; jR j) (w (S ;P)� w (Sn fig ;P [i ,R ]))

+ ∑
P2P(Nnfig)

cn (kPk)w (fig ;P)

where the �rst sum is over embedded coalitions (S ;P) satisfying i 2 S and
jS j � 2, cn (p; r) 2 R for all p 2 P� (n� 2) and r 2 p are parameters, and the
other coe¢ cients are de�ned in terms of the parameters.
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Axiomatic Characterizations

E¢ cient ∑i2N φi (w) = w(N;∅).
Symmetric Relabeling players relabels the payo¤s.

Dummy If a player cannot unilaterally change the worth of an (embedded)
coalition, then that player receives a zero payo¤.

Linear φ(a1w1 + a2w2) = a1φ(w1) + a2φ(w2).

Theorem (Shapley, 1953)
The Shapley coalition value is the unique e¢ cient, symmetric, dummy, and linear
coalition value.

Theorem (McCaulley, 1990; Merki, 1991; Theoharidis, 1993)
The Shapley partition values are the only e¢ cient, symmetric, dummy, and linear
partition values.
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E¢ cient, Symmetric, Dummy, and Linear Coalition Value

S w(S) = w1(S) + w2(S) + w3(S) + w4(S) � w5(S)
ABC 24 12 18 6 6 18
AB 18 12 0 0 6 0
AC 18 12 0 6 0 0
BC 18 0 18 0 0 0
A 12 12 0 0 0 0
B 0 0 0 0 0 0
C 0 0 0 0 0 0

i φi (w) = φi (w
1) + φi (w

2) + φi (w
3) + φi (w

4) � φi (w
5)

A 12 12 0 3 3 6
B 6 0 9 0 3 6
C 6 0 9 3 0 6
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E¢ cient, Symmetric, Dummy, and Linear Partition Values

S ;P w(S ;P) = w1(S ;P) + w2(S ;P) + w3(S ;P) + w4(S ;P) � w5(S ;P)
ABC ;∅ 24 6 12 12 6 12
AB;C 18 6 12 0 0 0
AC ;B 18 0 12 0 6 0
BC ;A 18 6 0 12 0 0
A;B,C 12 0 12 0 0 0
B;A,C 6 6 0 0 0 0
C ;B,C 0 0 0 0 0 0
A;BC 0 0 0 0 0 0
B;AC 0 0 0 0 0 0
C ;AB 0 0 0 0 0 0

i φi (w) = φi (w
1) + φi (w

2) + φi (w
3) + φi (w

4) � φi (w
5)

A 11� 3α α 12� 4α 0 3 4
B 8 6� 2α 2α 6 0 4
C 5+ 3α α 2α 6 3 4
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Game Spaces for Axiomatic Characterizations

The coalition game value characterization holds on any positive convex cone of
games containing the unanimity games uT (S) = 1 if T � S .

With 4-player unanimity games, 4 parameters appear, but the formula has only 3.

E uA;BD ,C (E) + uA;B ,CD (E) = uA;B ,C ,D (E) + dAD ;B ,CD (E)
AB;CD 0 1 0 1
AC;BD 1 0 0 1
A;B,C,D 1 1 1 1
A;B,CD 0 1 0 1
A;BD,C 1 0 0 1

i ϕi (u
A;BD ,C ) + ϕi (u

A;B ,CD ) = ϕi (u
A;B ,C ,D ) + ϕi (d

AD ;B ,C
D )

D b b c 0
The partition game value characterization holds on any convex cone of games
containing the dummy games

dT ;Qi (S ;P) = 1 if (Tn fig ;Q [i ,R ]) - (S ;P) for some R 2 Q [ f∅g .

Myerson (1977) proved there is a unique additive, symmetric, and carrier value.
Carrier is redundant on partition competitive games.
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Dispersion Process

For coalition games:
ABC =)

1/3
BC =)

1/2
C =)

1
∅

w(ABC )� w(BC ) w(BC )� w(C ) w(C )
to A to B to C

For partition games:
ABC ;∅ =)

1/3
BC ;A =)

1
2 a(1;1)

C ;AB =)
1

∅

w(ABC ;∅)� w(BC ;A) w(BC ;A)� w(C ;AB) w(C ;AB)
to A to B to C

ABC ;∅ =)
1/3

BC ;A =)
1
2 a(1;0)

C ;A,B =)
1

∅

w(ABC ;∅)� w(BC ;A) w(BC ;A)� w(C ;A,B) w(C ;A,B)
to A to B to C

where a(1; 1) + a(1; 0) = 1.
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Dispersion and Apex Values

φaA (w) = 1
3 (w (ABC ;∅)� w (BC ;A))

+ 1
3
1
2 a(1; 1) (w (AB ;C )� w (B;AC ))

+ 1
3
1
2 a(1; 0) (w (AB ;C )� w (B;A,C ))

+ 1
3
1
2 a(1; 1) (w (AC ;B)� w (C ;AB))

+ 1
3
1
2 a(1; 0) (w (AC ;B)� w (C ;A,B))

+ 213
1
2 a(1; 1) w (A;BC )

+ 213
1
2 a(1; 0) w (A;B,C )

φ12A (w)
= 1

3 (w (ABC ;∅)� w (BC ;A))
+ 1

6 (w (AB;C )� w (B;AC ))
+ 1

6 (w (AC ;B)� w (C ;AB))
+ 1

3w (A;BC )

φ1,2A (w)
= 1

3 (w (ABC ;∅)� w (BC ;A))
+ 1

6 (w (AB ;C )� w (B ;A,C ))
+ 1

6 (w (AC ;B)� w (C ;A,B))
+ 1

3w (A;B,C )
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Main Characterization

Theorem (Housman, 1996)
Suppose φ is a value on a convex cone Γ containing dummy games. The following
statements are equivalent:

1 φ is a Shapley value.
2 φ is a dispersion value.
3 φ is an a¢ ne combination of apex values.
4 φ is e¢ cient, symmetric, dummy, and linear on Γ.
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Second Characterization

Monotone φi (v) � φi (w) whenever i 2 N and v ,w 2 Γn satisfy
v (S ;P) � w (S ;P) if i 2 S and v (S ;P) � w (S ;P) if i /2 S .

Theorem (Housman, 1996)
Suppose φ is a value on a convex cone Γ containing dummy games and having a
nonempty interior. The following statements are equivalent:

1 φ is a Shapley value with nonnegative coe¢ cients.
2 φ is a dispersion value with nonnegative parameters.
3 φ is a convex combination of apex values.
4 φ is e¢ cient, symmetric, dummy, linear, and monotone on Γ.
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Di¤erent Numbers of Players

S ;P w(S ;P)
ABC ;∅ 1

AB;C 1

AC ;B 1

A;B,C 1

i φi (w)
A 1� 2α
B α
C α

α = c3(1; 1)

S ;P wD (S ;P)
ABCD;∅ 1
ABC ;D 1
ABD;C 1
AB ;C ,D 1
AB ;CD 1
ACD;B 1
AC ;B,D 1
AC ;BD 1
AD;B,C 1
A;B,C ,D 1
A;B,CD 1
A;BD,C 1

i φi (w
D )

A 1� 2β
B β
C β
D 0

The e¢ cient, symmetric, dummy,
and linear properties provide no
relationship between the
parameters cn and cn+1.

The dummy extension of the
partition game (N,w) is the
partition game (N [ fdg ,wd )
de�ned by wd (S ;P) =
w (Sn fdg ; fRn fdg : R 2 Pg n f∅g)
for all embedded coalitions (S ;P)
of N [ fdg.
Dummy Independent 8w ,wd 2 Γ
and 8i 2 N, φi

�
wd
�
= φi (w).
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Summary Values

Given a partition game w , de�ne a summary coalition game wb by

wb(S) = ∑
P2P(NnS )

b(kPk)w(S ;P)

where
b(∅) = 1.

De�ne the summary value φb by

φb(w) = Sh(wb).

For n � 4, there are Shapley values that are not summary values, and there are
summary values that are not Shapley values.

Theorem
A summary value φb is a Shapley value on n-player games if and only if

bn(p) = ∑
r2p

bn(pnfrg [ fr + 1g)

for all p 2 P�(n� 2).
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Third Characterization

Given a partition game w , de�ne a summary coalition game wb by

wb(S) = ∑
P2P(NnS )

b(kPk)w(S ;P)

where
b(∅) = 1.

De�ne the summary value φb by

φb(w) = Sh(wb).

Theorem
Suppose φ is a value on a convex cone Γ containing dummy games, having a
nonempty interior, and closed with respect to dummy extension. A value φ is
e¢ cient, symmetric, linear, monotone, and dummy independent on Γ if and only if
φ is a summary value with nonnegative parameters that are identical for all n and
satisfy

b(p) = ∑
r2p

b(pnfrg [ fr + 1g)

for all natural number partitions p.
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