Values for Partition Function Form Games

David Housman
Goshen College
July 2008 (a work in progress)

Preview

- Coalition versus partition games and values
- Values
- Weighted marginal sum values
- Dispersion values
- Apex values
- Summary values
- Properties
- Efficient, symmetric, dummy, and linear
- Monotone
- Dummy independence

Games

Definition (Coalition Game)

Players N and a real-valued
function w on $\mathcal{C}=$ $\{S: \varnothing \neq S \subseteq N\}$.

Example	
S	$w(S)$
$A B C$	24
$A B$	18
$A C$	18
$B C$	18
A	12
B	0
C	0

Games

Definition (Partition Game)

Definition (Coalition Game)

Players N and a real-valued function w on $\mathcal{C}=$ $\{S: \varnothing \neq S \subseteq N\}$.

Example	
S	$w(S)$
$A B C$	24
$A B$	18
$A C$	18
$B C$	18
A	12
B	0
C	0

Example

$S ; P$	$w(S ; P)$
$A B C ; \varnothing$	24
$A B ; C$	18
$A C ; B$	18
$B C ; A$	18
$A ; B, C$	12
$B ; A, C$	6
$C ; B, C$	0
$A ; B C$	0
$B ; A C$	0
$C ; A B$	0

Shapley Values

Symmetric Weighted Sum of Marginals

For 3-player coalition games:

$$
\begin{array}{rll}
\phi_{A}(w) & =c(0) & (w(A B C)-w(B C)) \\
& +c(1) & (w(A B)-w(B)) \\
& +c(1) & (w(A C)-w(C)) \\
& +c(2) & w(A)
\end{array}
$$

Shapley Values

Symmetric Weighted Sum of Marginals

For 3-player coalition games:

$$
\begin{array}{rll}
\phi_{A}(w) & =c(0) & (w(A B C)-w(B C)) \\
& +c(1) & (w(A B)-w(B)) \\
& +c(1) & (w(A C)-w(C)) \\
& +c(2) & w(A)
\end{array}
$$

For 3-player partition games

$$
\begin{aligned}
\phi_{A}(w) & =c(\varnothing ; 0) & (w(A B C ; \varnothing)-w(B C ; A)) \\
& +c(1 ; 1) & (w(A B ; C)-w(B ; A C)) \\
& +c(1 ; 0) & (w(A B ; C)-w(B ; A, C)) \\
+ & c(1 ; 1) & (w(A C ; B)-w(C ; A B)) \\
& +c(1 ; 0) & (w(A C ; B)-w(C ; A, B)) \\
& +c(2) & w(A ; B C) \\
& +c(1,1) & w(A ; B, C)
\end{aligned}
$$

Shapley Values

Efficient and Symmetric Weighted Sum of Marginals

For 3-player coalition games:

$$
\begin{aligned}
\phi_{A}(w) & =\frac{1}{3} \quad(w(A B C)-w(B C)) \\
& +\frac{1}{6}(w(A B)-w(B)) \\
& +\frac{1}{6}(w(A C)-w(C)) \\
& +\frac{1}{3} \quad w(A)
\end{aligned}
$$

Shapley Values

Efficient and Symmetric Weighted Sum of Marginals

For 3-player coalition games:

$$
\begin{aligned}
\phi_{A}(w) & =\frac{1}{3} \quad(w(A B C)-w(B C)) \\
& +\frac{1}{6} \quad(w(A B)-w(B)) \\
& +\frac{1}{6}(w(A C)-w(C)) \\
& +\frac{1}{3} \quad w(A)
\end{aligned}
$$

For 3-player partition games

$$
\begin{array}{rrrl}
\phi_{A}(w) & = & \frac{1}{3} & (w(A B C ; \varnothing)-w(B C ; A)) \\
+ & c(1 ; 1) & (w(A B ; C)-w(B ; A C)) \\
+ & \left(\frac{1}{6}-c(1 ; 1)\right) & (w(A B ; C)-w(B ; A, C)) \\
+ & c(1 ; 1) & (w(A C ; B)-w(C ; A B)) \\
+ & \left(\frac{1}{6}-c(1 ; 1)\right) & (w(A C ; B)-w(C ; A, B)) \\
+ & 2 c(1 ; 1) & w(A ; B C) \\
+ & \left(\frac{1}{3}-2 c(1 ; 1)\right) & w(A ; B, C)
\end{array}
$$

Shapley Values

Efficient and Symmetric Weighted Sum of Marginals

For 3-player coalition games:

$$
\begin{aligned}
\phi_{A}(w) & =\frac{1}{3} \quad(w(A B C)-w(B C)) \\
& +\frac{1}{6}(w(A B)-w(B)) \\
& +\frac{1}{6}(w(A C)-w(C)) \\
& +\frac{1}{3} \quad w(A)
\end{aligned}
$$

For 3-player partition games

$$
\begin{array}{rlrl}
\phi_{A}(w) & = & \frac{1}{3} & (w(A B C ; \varnothing)-w(B C ; A)) \\
& + & c(1 ; 1) & (w(A B ; C)-w(B ; A C)) \\
& + & \left(\frac{1}{6}-c(1 ; 1)\right) & (w(A B ; C)-w(B ; A, C)) \\
+ & c(1 ; 1) & (w(A C ; B)-w(C ; A B)) \\
& + & \left(\frac{1}{6}-c(1 ; 1)\right) & (w(A C ; B)-w(C ; A, B)) \\
& + & 2 c(1 ; 1) & w(A ; B C) \\
& + & \left(\frac{1}{3}-2 c(1 ; 1)\right) & w(A ; B, C) \\
c(1 ; 1)=\phi_{A}(w) \text { if } w(A B C ; \varnothing)=w(B C ; A)=w(A B ; C)=1 .
\end{array}
$$

Shapley Values

For 5-player partition games

$$
\begin{aligned}
& \phi_{A}(w)=\frac{1}{5} \quad(w(A B C D E ; \varnothing)-w(B C D E ; A)) \\
& +\quad c(1 ; 1) \quad(w(A B C D ; E)-w(B C D ; A E)) \\
& +\quad c(2 ; 2) \quad(w(A B C ; D E)-w(B C ; A D E)) \\
& + \\
& \text {... } \\
& +\quad c(3 ; 3) \quad(w(A B ; C D E)-w(B ; A C D E)) \\
& +\quad c(2,1 ; 2) \quad(w(A B ; C D, E)-w(B ; A C D, E)) \\
& +\quad c(2,1 ; 1) \quad(w(A B ; C D, E)-w(B ; C D, A E)) \\
& +c(1,1,1 ; 1) \quad(w(A B ; C, D, E)-w(B ; A C, D, E))
\end{aligned}
$$

In 3, 4, and 5 player games, there are 1, 3, and 7 parameters.

Shapley Values

Efficient and Symmetric Weighted Sum of Marginals

For coalition games:

$$
\mathrm{SH}_{i}(w)=\sum_{S \in \mathcal{C}_{n}: i \in S} \frac{(|S|-1)!(n-|S|)!}{n!}(w(S)-w(S \backslash\{i\}))
$$

Shapley Values

Efficient and Symmetric Weighted Sum of Marginals

For coalition games:

$$
\mathrm{SH}_{i}(w)=\sum_{S \in \mathcal{\mathcal { C } _ { n }}: i \in S} \frac{(|S|-1)!(n-|S|)!}{n!}(w(S)-w(S \backslash\{i\}))
$$

For partition games

$$
\begin{aligned}
\phi_{i}^{c}(w)= & \sum_{(S ; P)} \sum_{R \in P \cup\{\varnothing\}} c_{n}(\|P\| ;|R|)(w(S ; P)-w(S \backslash\{i\} ; P[i, R])) \\
& +\sum_{P \in \mathcal{P}(N \backslash\{i\})} c_{n}(\|P\|) w(\{i\} ; P)
\end{aligned}
$$

where the first sum is over embedded coalitions $(S ; P)$ satisfying $i \in S$ and $|S| \geq 2, c_{n}(p ; r) \in \mathbb{R}$ for all $p \in \mathcal{P}^{*}(n-2)$ and $r \in p$ are parameters, and the other coefficients are defined in terms of the parameters.

Axiomatic Characterizations

Efficient $\sum_{i \in N} \phi_{i}(w)=w(N ; \varnothing)$.
Symmetric Relabeling players relabels the payoffs.
Dummy If a player cannot unilaterally change the worth of an (embedded) coalition, then that player receives a zero payoff.
Linear $\phi\left(a_{1} w^{1}+a_{2} w^{2}\right)=a_{1} \phi\left(w^{1}\right)+a_{2} \phi\left(w^{2}\right)$.

Axiomatic Characterizations

Efficient $\sum_{i \in N} \phi_{i}(w)=w(N ; \varnothing)$.
Symmetric Relabeling players relabels the payoffs.
Dummy If a player cannot unilaterally change the worth of an (embedded) coalition, then that player receives a zero payoff.
Linear $\phi\left(a_{1} w^{1}+a_{2} w^{2}\right)=a_{1} \phi\left(w^{1}\right)+a_{2} \phi\left(w^{2}\right)$.

Theorem (Shapley, 1953)

The Shapley coalition value is the unique efficient, symmetric, dummy, and linear coalition value.

Axiomatic Characterizations

Efficient $\sum_{i \in N} \phi_{i}(w)=w(N ; \varnothing)$.
Symmetric Relabeling players relabels the payoffs.
Dummy If a player cannot unilaterally change the worth of an (embedded) coalition, then that player receives a zero payoff.
Linear $\phi\left(a_{1} w^{1}+a_{2} w^{2}\right)=a_{1} \phi\left(w^{1}\right)+a_{2} \phi\left(w^{2}\right)$.

Theorem (Shapley, 1953)

The Shapley coalition value is the unique efficient, symmetric, dummy, and linear coalition value.

Theorem (McCaulley, 1990; Merki, 1991; Theoharidis, 1993)

The Shapley partition values are the only efficient, symmetric, dummy, and linear partition values.

Efficient, Symmetric, Dummy, and Linear Coalition Value

S	$w(S)=$	$w^{1}(S)$	$+w^{2}(S)$	$+w^{3}(S)$	$+w^{4}(S)$	$-w^{5}(S)$
$A B C$	24	12	18	6	6	18
$A B$	18	12	0	0	6	0
$A C$	18	12	0	6	0	0
$B C$	18	0	18	0	0	0
A	12	12	0	0	0	0
B	0	0	0	0	0	0
C	0	0	0	0	0	0
i	$\phi_{i}(w)=\phi_{i}\left(w^{1}\right)+\phi_{i}\left(w^{2}\right)+\phi_{i}\left(w^{3}\right)+\phi_{i}\left(w^{4}\right)-\phi_{i}\left(w^{5}\right)$					
A	12	12	0	3	3	6
B	6	0	9	0	3	6
C	6	0	9	3	0	6

Efficient, Symmetric, Dummy, and Linear Partition Values

$S ; P$	$w(S ; P)$	$=w^{1}(S ; P)$	$+w^{2}(S ; P)$	$+w^{3}(S ; P)$	$+w^{4}(S ; P)$	$-w^{5}(S ; P)$
$A B C ; \varnothing$	24	6	12	12	6	12
$A B ; C$	18	6	12	0	0	0
$A C ; B$	18	0	12	0	6	0
$B C ; A$	18	6	0	12	0	0
$A ; B, C$	12	0	12	0	0	0
$B ; A, C$	6	6	0	0	0	0
$C ; B, C$	0	0	0	0	0	0
$A ; B C$	0	0	0	0	0	0
$B ; A C$	0	0	0	0	0	0
$C ; A B$	0	0	0	0	0	0
i	$\phi_{i}(w)$	$=\phi_{i}\left(w^{1}\right)$	$+\phi_{i}\left(w^{2}\right)$	$+\phi_{i}\left(w^{3}\right)$	$+\phi_{i}\left(w^{4}\right)$	$-\phi_{i}\left(w^{5}\right)$
A	11-3 ${ }^{\text {d }}$	α	$12-4 \alpha$	0	3	4
B	8	$6-2 \alpha$	2α	6	0	4
C	$5+3 \alpha$	α	2α	6	3	4

Game Spaces for Axiomatic Characterizations

- The coalition game value characterization holds on any positive convex cone of games containing the unanimity games $u^{T}(S)=1$ if $T \subseteq S$.

Game Spaces for Axiomatic Characterizations

- The coalition game value characterization holds on any positive convex cone of games containing the unanimity games $u^{T}(S)=1$ if $T \subseteq S$.
- With 4-player unanimity games, 4 parameters appear, but the formula has only 3 .

Game Spaces for Axiomatic Characterizations

- The coalition game value characterization holds on any positive convex cone of games containing the unanimity games $u^{T}(S)=1$ if $T \subseteq S$.
- With 4 -player unanimity games, 4 parameters appear, but the formula has only 3 .

E	$\mathrm{u}^{A ; B D, C}(\mathrm{E})+\mathrm{u}^{A ; B, C D}(\mathrm{E})=\mathrm{u}^{A ; B, C, D}(\mathrm{E})+\mathrm{d}_{D}^{A D ; B, C}(\mathrm{E})$			
$\mathrm{AB} ; \mathrm{CD}$	0	1	0	1
$\mathrm{AC} ; \mathrm{BD}$	1	0	0	1
$\mathrm{~A} ; \mathrm{B}, \mathrm{C}, \mathrm{D}$	1	1	1	1
$-\mathrm{A} ; \mathrm{B}, \mathrm{CD}$	0	1	0	1
$\mathrm{~A} ; \mathrm{BD}, \mathrm{C}$	1	0	0	1

$$
\begin{array}{ccc}
\mathrm{i} & \varphi_{i}\left(\mathrm{u}^{A ; B D, C}\right)+\varphi_{i}\left(\mathrm{u}^{A ; B, C D}\right)=\varphi_{i}\left(\mathrm{u}^{A ; B, C, D}\right)+\varphi_{i}\left(\mathrm{~d}_{D}^{A D ; B, C}\right) \\
\mathrm{D} & \mathrm{~b} & \mathrm{c}
\end{array}
$$

Game Spaces for Axiomatic Characterizations

- The coalition game value characterization holds on any positive convex cone of games containing the unanimity games $u^{T}(S)=1$ if $T \subseteq S$.
- With 4-player unanimity games, 4 parameters appear, but the formula has only 3 .

E	$\mathrm{u}^{A ; B D, C}(\mathrm{E})+\mathrm{u}^{A ; B, C D}(\mathrm{E})=$	$\mathrm{u}^{A ; B, C, D}(\mathrm{E})+\mathrm{d}_{D}^{A D ; B, C}(\mathrm{E})$		
$\mathrm{AB} ; \mathrm{CD}$	0	1	0	1
$\mathrm{AC} ; \mathrm{BD}$	1	0	0	1
$\mathrm{~A} ; \mathrm{B}, \mathrm{C}, \mathrm{D}$	1	1	1	1
$-\mathrm{A} ; \mathrm{B}, \mathrm{CD}$	0	1	0	1
$\mathrm{~A} ; \mathrm{BD}, \mathrm{C}$	1	0	0	1

$$
\begin{array}{ccc}
\mathrm{i} & \varphi_{i}\left(\mathrm{u}^{A ; B D, C}\right)+\varphi_{i}\left(\mathrm{u}^{A ; B, C D}\right)=\varphi_{i}\left(\mathrm{u}^{A ; B, C, D}\right)+\varphi_{i}\left(\mathrm{~d}_{D}^{A D ; B, C}\right) \\
\mathrm{D} & \mathrm{~b} & \mathrm{~b}
\end{array}
$$

- The partition game value characterization holds on any convex cone of games containing the dummy games

$$
d_{i}^{T ; Q}(S ; P)=1 \text { if }(T \backslash\{i\} ; Q[i, R]) \precsim(S ; P) \text { for some } R \in Q \cup\{\varnothing\}
$$

Game Spaces for Axiomatic Characterizations

- The coalition game value characterization holds on any positive convex cone of games containing the unanimity games $u^{T}(S)=1$ if $T \subseteq S$.
- With 4-player unanimity games, 4 parameters appear, but the formula has only 3 .

E	$\mathrm{u}^{A ; B D, C}(\mathrm{E})+\mathrm{u}^{A ; B, C D}(\mathrm{E})=$	$\mathrm{u}^{A ; B, C, D}(\mathrm{E})+\mathrm{d}_{D}^{A D ; B, C}(\mathrm{E})$		
$\mathrm{AB} ; \mathrm{CD}$	0	1	0	1
$\mathrm{AC} ; \mathrm{BD}$	1	0	0	1
$\mathrm{~A} ; \mathrm{B}, \mathrm{C}, \mathrm{D}$	1	1	1	1
$0 \mathrm{~A} ; \mathrm{B}, \mathrm{CD}$	0	1	0	1
$\mathrm{~A} ; \mathrm{BD}, \mathrm{C}$	1	0	0	1
i	$\varphi_{i}\left(\mathrm{u}^{A ; B D, C}\right)+\varphi_{i}\left(\mathrm{u}^{A ; B, C D}\right)$	$=\varphi_{i}\left(\mathrm{u}^{A ; B, C, D}\right)+\varphi_{i}\left(\mathrm{~d}_{D}^{A D ; B, C}\right)$		
D	b	b	c	

- The partition game value characterization holds on any convex cone of games containing the dummy games

$$
d_{i}^{T ; Q}(S ; P)=1 \text { if }(T \backslash\{i\} ; Q[i, R]) \precsim(S ; P) \text { for some } R \in Q \cup\{\varnothing\}
$$

- Myerson (1977) proved there is a unique additive, symmetric, and carrier value. Carrier is redundant on partition competitive games.

Dispersion Process

Dispersion Process

For coalition games:
$A B C$

Dispersion Process

For coalition games:
$A B C \quad \underset{1 / 3}{\Longrightarrow} \quad B C$

Dispersion Process

For coalition games:
$A B C$
$\underset{1 / 3}{\overrightarrow{ }}$
$B C \quad \underset{1 / 2}{\Longrightarrow}$
C

Dispersion Process

For coalition games:
$A B C$
$\underset{1 / 3}{\overrightarrow{ }}$
$B C$

$C \Longrightarrow \varnothing$

Dispersion Process

For coalition games:

$A B C$	$B C \quad \Longrightarrow \quad \Longrightarrow$	C
$w(A B C)-w(B C)$	$w(B C)-w(C)$ to B	$w(C)$ to A

Dispersion Process

For coalition games:

$A B C \quad \overrightarrow{1 / 3}$	$B C \quad \underset{1 / 2}{ }$	$C \quad \underset{1}{ }$
$w(A B C)-w(B C)$	$w(B C)-w(C)$	$w(C)$
to A	to B	to C

For partition games:

$A B C ; \varnothing \quad \underset{1 / 3}{\longrightarrow}$	$B C ; A \quad \underset{\frac{1}{2} a(1 ; 1)}{\longrightarrow}$	$C ; A B \quad \Longrightarrow$
$\begin{aligned} & w(A B C ; \varnothing)-w(B C ; A) \\ & \text { to } A \end{aligned}$	$\begin{aligned} & w(B C ; A)-w(C ; A B) \\ & \text { to } B \end{aligned}$	$\begin{aligned} & w(C ; A B) \\ & \text { to } C \end{aligned}$
$A B C ; \varnothing \quad \Longrightarrow \quad \Longrightarrow$	$B C ; A \quad \underset{\frac{1}{2} a(1 ; 0)}{\Longrightarrow}$	$C ; A, B \xrightarrow{\Longrightarrow}$
$\begin{aligned} & w(A B C ; \varnothing)-w(B C ; A) \\ & \text { to } A \end{aligned}$	$\begin{aligned} & w(B C ; A)-w(C ; A, B) \\ & \text { to } B \end{aligned}$	$\begin{aligned} & w(C ; A, B) \\ & \text { to } C \end{aligned}$

Dispersion and Apex Values

$$
\begin{aligned}
\phi_{A}^{a}(w) & = & \frac{1}{3} & (w(A B C ; \varnothing)-w(B C ; A)) \\
& + & \frac{1}{3} \frac{1}{2} a(1 ; 1) & (w(A B ; C)-w(B ; A C)) \\
& + & \frac{1}{3} \frac{1}{2} a(1 ; 0) & (w(A B ; C)-w(B ; A, C)) \\
& + & \frac{1}{3} \frac{1}{2} a(1 ; 1) & (w(A C ; B)-w(C ; A B)) \\
& + & \frac{1}{3} \frac{1}{2} a(1 ; 0) & (w(A C ; B)-w(C ; A, B)) \\
& + & 2 \frac{1}{3} \frac{1}{2} a(1 ; 1) & w(A ; B C) \\
& + & 2 \frac{1}{3} \frac{1}{2} a(1 ; 0) & w(A ; B, C)
\end{aligned}
$$

Dispersion and Apex Values

$$
\begin{array}{rlrl}
\phi_{A}^{a}(w) & = & \frac{1}{3} & (w(A B C ; \emptyset)-w(B C ; A)) \\
& + & \frac{1}{3} \frac{1}{2} a(1 ; 1) & (w(A B ; C)-w(B ; A C)) \\
& + & \frac{1}{3} \frac{1}{2} a(1 ; 0) & (w(A B ; C)-w(B ; A, C)) \\
& + & \frac{1}{3} \frac{1}{2} a(1 ; 1) & (w(A C ; B)-w(C ; A B)) \\
+ & \frac{1}{3} \frac{1}{2} a(1 ; 0) & (w(A C ; B)-w(C ; A, B)) \\
+ & 2 \frac{1}{3} \frac{1}{2} a(1 ; 1) & w(A ; B C) \\
& + & 2 \frac{1}{3} \frac{1}{2} a(1 ; 0) & w(A ; B, C)
\end{array}
$$

$$
\begin{array}{ll}
\phi_{A}^{12}(w) & \phi_{A}^{1,2}(w) \\
\quad= & \frac{1}{3}(w(A B C ; \varnothing)-w(B C ; A))
\end{array} \quad=\frac{1}{3}(w(A B C ; \varnothing)-w(B C ; A))
$$

Main Characterization

Theorem (Housman, 1996)

Suppose ϕ is a value on a convex cone Γ containing dummy games. The following statements are equivalent:
(1) ϕ is a Shapley value.
(2) ϕ is a dispersion value.
(3) ϕ is an affine combination of apex values.

- ϕ is efficient, symmetric, dummy, and linear on Γ.

Second Characterization

Monotone $\phi_{i}(v) \leq \phi_{i}(w)$ whenever $i \in N$ and $v, w \in \Gamma_{n}$ satisfy

$$
v(S ; P) \leq w(S ; P) \text { if } i \in S \text { and } v(S ; P) \geq w(S ; P) \text { if } i \notin S .
$$

Second Characterization

Monotone $\phi_{i}(v) \leq \phi_{i}(w)$ whenever $i \in N$ and $v, w \in \Gamma_{n}$ satisfy

$$
v(S ; P) \leq w(S ; P) \text { if } i \in S \text { and } v(S ; P) \geq w(S ; P) \text { if } i \notin S .
$$

Theorem (Housman, 1996)

Suppose ϕ is a value on a convex cone Γ containing dummy games and having a nonempty interior. The following statements are equivalent:
(1) ϕ is a Shapley value with nonnegative coefficients.
(3) ϕ is a dispersion value with nonnegative parameters.
(0) ϕ is a convex combination of apex values.
(0) ϕ is efficient, symmetric, dummy, linear, and monotone on Γ.

Different Numbers of Players

$S ; P$	$w(S ; P)$
$A B C ; \varnothing$	1
$A B ; C$	1
$A C ; B$	1
$A ; B, C$	1

$A ; B, C \quad 1$

i	$\phi_{i}(w)$
A	$1-2 \alpha$
B	α
C	α
$\alpha=$	$c_{3}(1 ; 1)$

Different Numbers of Players

$S ; P$	$w(S ; P)$	$S ; P$	$w^{D}(S ; P)$
$A B C ; \varnothing$	1	$A B C D ; \varnothing$	1
		$A B C ; D$	1
$A B ; C$	1	$A B D ; C$	1
		$A B ; C, D$	1
		$A B ; C D$	1
$A C ; B$	1	$A C D ; B$	1
		$A C ; B, D$	1
		$A C ; B D$	1
$A ; B, C$	1	$A D ; B, C$	1
		$A ; B, C, D$	1
		$A ; B, C D$	1
		$A ; B D, C$	1
i	$\phi_{i}(w)$	i	$\phi_{i}\left(w^{D}\right)$
A	1-2 α	A	$1-2 \beta$
B	α	B	β
C	α	C	β
$\alpha=c_{3}$	($1 ; 1$)	D	0

Different Numbers of Players

$S ; P$	$w(S ; P)$	$S ; P$	$w^{D}(S ; P)$
$A B C ; \varnothing$	1	$A B C D ; \varnothing$	1
		$A B C ; D$	1
$A B ; C$	1	$A B D ; C$	1
		$A B ; C, D$	1
		$A B ; C D$	1
$A C ; B$	1	$A C D ; B$	1
		$A C ; B, D$	1
		$A C ; B D$	1
$A ; B, C$	1	$A D ; B, C$	1
		$A ; B, C, D$	1
		$A ; B, C D$	1
		$A ; B D, C$	1
i		$\phi_{i}(w)$	
A	$1-2 \alpha$	A	$\phi_{i}\left(w^{D}\right)$
B	α	B	$1-2 \beta$
C	α	C	β
$\alpha=c_{3}(1 ; 1)$		D	0

The efficient, symmetric, dummy, and linear properties provide no relationship between the parameters c_{n} and c_{n+1}.

Different Numbers of Players

$S ; P$	$w(S ; P)$	$S ; P$	$w^{D}(S ; P)$
$A B C ; \varnothing$	1	$A B C D ; \varnothing$	1
		$A B C ; D$	1
$A B ; C$	1	$A B D ; C$	1
		$A B ; C, D$	1
		$A B ; C D$	1
$A C ; B$	1	$A C D ; B$	1
		$A C ; B, D$	1
		$A C ; B D$	1
$A ; B, C$	1	$A D ; B, C$	1
		$A ; B, C, D$	1
		$A ; B, C D$	1
		$A ; B D, C$	1
i	$\phi_{i}(w)$	i	$\phi_{i}\left(w^{D}\right)$
A	$1-2 \alpha$	A	$1-2 \beta$
B	α	B	β
C	α	C	β
$\alpha=c_{3}$	(1; 1)	D	0

The efficient, symmetric, dummy, and linear properties provide no relationship between the parameters c_{n} and c_{n+1}.

The dummy extension of the partition game (N, w) is the partition game $\left(N \cup\{d\}, w^{d}\right)$ defined by $w^{d}(S ; P)=$ $w(S \backslash\{d\} ;\{R \backslash\{d\}: R \in P\} \backslash\{\varnothing\}$ for all embedded coalitions ($S ; P$) of $N \cup\{d\}$.

Different Numbers of Players

$S ; P$	$w(S ; P)$	$S ; P$	$w^{D}(S ; P)$	
$A B C ; \varnothing$	1	$A B C D ; \varnothing$	1	
		$A B C ; D$	1	The
$A B ; C$	1	$A B D ; C$	1	and linear properties provide no
		$A B ; C, D$	1	relationship between the
		$A B ; C D$	1	parameters c_{n} and c_{n+1}
$A C ; B$	1	$A C D ; B$	1	
		$A C ; B, D$	1	The dummy extension of the
		$A C ; B D$	1	partition game (N, w) is the
$A ; B, C$	1	$A D ; B, C$	1	partition game ($N \cup\{d\}, w^{d}$)
		$A ; B, C, D$	1	defined by $w^{d}(S ; P)=$
		$A ; B, C D$	1	$w(S \backslash\{d\} ;\{R \backslash\{d\}: R \in P\} \backslash\{\varnothing\}$
		$A ; B D, C$	1	for all embedded coalitions $(S ; P)$ of $N \cup\{d\}$.
i	$\phi_{i}(w)$	i	$\phi_{i}\left(w^{D}\right)$	Dummy Independent $\forall w, w^{d} \in \Gamma$
A	$1-2 \alpha$	A	$1-2 \beta$	and $\forall i \in N, \phi_{i}\left(w^{d}\right)=\phi_{i}(w)$.
B	α	B	β	and $\forall i \in N, \phi_{i}\left(w^{d}\right)=\phi_{i}(w)$.
C	α	C	β	
$\alpha=c_{3}$	($1 ; 1$)	D	0	三. $\overline{\text { ® }}$

Summary Values

Given a partition game w, define a summary coalition game w^{b} by

$$
w^{b}(S)=\sum_{P \in \mathcal{P}(N \backslash S)} b(\|P\|) w(S ; P)
$$

where

$$
b(\varnothing)=1
$$

Summary Values

Given a partition game w, define a summary coalition game w^{b} by

$$
w^{b}(S)=\sum_{P \in \mathcal{P}(N \backslash S)} b(\|P\|) w(S ; P)
$$

where

$$
b(\varnothing)=1 .
$$

Define the summary value ϕ^{b} by

$$
\phi^{b}(w)=\operatorname{SH}\left(w^{b}\right) .
$$

Summary Values

Given a partition game w, define a summary coalition game w^{b} by

$$
w^{b}(S)=\sum_{P \in \mathcal{P}(N \backslash S)} b(\|P\|) w(S ; P)
$$

where

$$
b(\varnothing)=1 .
$$

Define the summary value ϕ^{b} by

$$
\phi^{b}(w)=\operatorname{SH}\left(w^{b}\right) .
$$

For $n \geq 4$, there are Shapley values that are not summary values, and there are summary values that are not Shapley values.

Summary Values

Given a partition game w, define a summary coalition game w^{b} by

$$
w^{b}(S)=\sum_{P \in \mathcal{P}(N \backslash S)} b(\|P\|) w(S ; P)
$$

where

$$
b(\varnothing)=1 .
$$

Define the summary value ϕ^{b} by

$$
\phi^{b}(w)=\operatorname{SH}\left(w^{b}\right) .
$$

For $n \geq 4$, there are Shapley values that are not summary values, and there are summary values that are not Shapley values.

Theorem

A summary value ϕ^{b} is a Shapley value on n-player games if and only if

$$
b_{n}(p)=\sum_{r \in p} b_{n}(p \backslash\{r\} \cup\{r+1\})
$$

for all $p \in \mathcal{P}^{*}(n-2)$.

Third Characterization

Given a partition game w, define a summary coalition game w^{b} by

$$
w^{b}(S)=\sum_{P \in \mathcal{P}(N \backslash S)} b(\|P\|) w(S ; P)
$$

where

$$
b(\varnothing)=1 .
$$

Define the summary value ϕ^{b} by

$$
\phi^{b}(w)=\operatorname{SH}\left(w^{b}\right) .
$$

Theorem

Suppose ϕ is a value on a convex cone Γ containing dummy games, having a nonempty interior, and closed with respect to dummy extension. A value ϕ is efficient, symmetric, linear, monotone, and dummy independent on Γ if and only if ϕ is a summary value with nonnegative parameters that are identical for all n and satisfy

$$
b(p)=\sum_{r \in p} b(p \backslash\{r\} \cup\{r+1\})
$$

for all natural number partitions p.

References

- Myerson, R. (1977). Values of games in partition function form. International Journal of Game Theory 6, 23-31
- McCaulley, P. (1990). Axioms and values of partition function form games. Research Experiences for Undergraduates Final Report.
- Merki, S. (1991). Values on partition function form games. Research Experiences for Undergraduates Final Report.
- Theoharidis, M. (1993). The Shapley value for partition function form games. Research Experiences for Undergraduates Final Report.
- Housman, D. (1996). Values for partition function form games. Unpublished manuscript.
- Housman, D. (1997). Values for partition function form games, International Conference on Game Theory, SUNY Stony Brook, New York, July 7-11, 1997.
- Housman, D. (2005). Values for partition function form games, at Lucas Fest, a conference in honor of William F. Lucas, Claremont University, June 9-10, 2005.

