Strategic Games, Theory, and Experiment Butler University

David Housman

Goshen College

November 11, 2008

Dictator Game

Dictator Game

- Dictator: Of \$4.00, I offer ___ to another person and will keep the rest.

Dictator Game

- Dictator: Of \$4.00, I offer ___ to another person and will keep the rest.
- Randomly chosen audience members will be the Dictator and other person.

Dictator Game

- Dictator: Of \$4.00, I offer ___ to another person and will keep the rest.
- Randomly chosen audience members will be the Dictator and other person.
- Play now!

Dictator Game

- Dictator: Of \$4.00, I offer ___ to another person and will keep the rest.
- Randomly chosen audience members will be the Dictator and other person.
- Play now!
- What is the distribution of offers?

Dictator Game

- Dictator: Of \$4.00, I offer ___ to another person and will keep the rest.
- Randomly chosen audience members will be the Dictator and other person.
- Play now!

Dictator Game

- Dictator: Of \$4.00, I offer ___ to another person and will keep the rest.
- Randomly chosen audience members will be the Dictator and other person.
- Play now!
- What is the distribution of offers?
- Theory: self-interested versus equity-interested dictator
- Experiment: double-blind vs. standard

Ultimatum Game

Ultimatum Game

- Proposer: Of $\$ 4.00$, I offer ___ to another person and will keep the rest.

Ultimatum Game

- Proposer: Of $\$ 4.00$, I offer ___ to another person and will keep the rest.
- Responder: I will accept offers of \qquad or greater.

Ultimatum Game

- Proposer: Of \$4.00, I offer ___ to another person and will keep the rest.
- Responder: I will accept offers of \qquad or greater.
- Randomly chosen
audience members will be the Proposer and Responder.

Ultimatum Game

- Proposer: Of \$4.00, I offer to another person and will keep the rest.
- Responder: I will accept offers of \qquad or greater.
- Randomly chosen audience members will be the Proposer and Responder.
- Play now!

Ultimatum Game

- Proposer: Of \$4.00, I offer \qquad to another person and will keep the rest.
- Responder: I will accept offers of \qquad
- Offer distribution: now, theory, experiment. greater.
- Randomly chosen audience members will be the Proposer and Responder.
- Play now!

Ultimatum Game

- Proposer: Of $\$ 4.00$, I offer \qquad to another person and will keep the rest.
- Responder: I will accept offers of \qquad or greater.
- Randomly chosen audience members will be the Proposer and Responder.
- Play now!
- Offer distribution: now, theory, experiment.
- Minimal acceptable offers distribution: now, theory, experiment.

Ah or Blee

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."
- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chooses Ah.

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."
- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chooses Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."
- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chooses Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For example, if 6 players choose Ah and 14 players choose Blee, then an Ah player receives $6 \times \$ 0.50=\$ 3.00$ and a Blee player receives $\$ 3.00+\$ 5.00=\$ 8.00$.

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."
- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chooses Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For example, if 6 players choose Ah and 14 players choose Blee, then an Ah player receives $6 \times \$ 0.50=\$ 3.00$ and a Blee player receives $\$ 3.00+\$ 5.00=\$ 8.00$.
- A randomly chosen audience member will receive the money $s / h e$ is due.

Ah or Blee

- Each player should secretly choose "Ah" or "Blee."
- If you choose Ah , then you will receive $a=\$ 0.50$ for each player who chooses Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For example, if 6 players choose Ah and 14 players choose Blee, then an Ah player receives $6 \times \$ 0.50=\$ 3.00$ and a Blee player receives $\$ 3.00+\$ 5.00=\$ 8.00$.
- A randomly chosen audience member will receive the money $s / h e$ is due.
- Play now!

Ah or Blee Theory

- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.

Ah or Blee Theory

- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.
- This is called the Prisoners' Dilemma.

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.
- This is called the Prisoners' Dilemma.
- There is no dilemma if

Ah or Blee Theory

- If you choose $A h$, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.
- This is called the Prisoners' Dilemma.
- There is no dilemma if
- players are purely altruistic,

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.
- This is called the Prisoners' Dilemma.
- There is no dilemma if
- players are purely altruistic,
- there are mandates by an external authority, or

Ah or Blee Theory

- If you choose Ah, then you will receive $a=\$ 0.50$ for each player who chose Ah.
- If you choose Blee, then you will receive what an Ah player receives plus a bonus of $b=\$ 5.00$.
- For self-interested players,
- Blee is each player's dominant strategy,
- Blee is each player's prudential strategy,
- each player choosing Blee is the unique Nash equilibrium, and
- everyone would be better off if everyone chose Ah.
- This is called the Prisoners' Dilemma.
- There is no dilemma if
- players are purely altruistic,
- there are mandates by an external authority, or
- there is repeated play.

A Strange Auction

A Strange Auction

- Open ascending bid auction for a prize.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.
- No one else pays.

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.
- No one else pays.
- Play now!

A Strange Auction

- Open ascending bid auction for a prize.
- The highest bidder wins the prize but pays her bid.
- The second highest bidder wins nothing but pays his bid.
- No one else pays.
- Play now!
- Biological interpretation.

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.
- I know what the prize is worth to me but do not know what it is worth to you.

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.
- I know what the prize is worth to me but do not know what it is worth to you.
- $f(v)$ is the probability density the prize is worth v to a player.

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.
- I know what the prize is worth to me but do not know what it is worth to you.
- $f(v)$ is the probability density the prize is worth v to a player.
- $\beta(v)$ is a player's bid if the prize is worth v to him.

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.
- I know what the prize is worth to me but do not know what it is worth to you.
- $f(v)$ is the probability density the prize is worth v to a player.
- $\beta(v)$ is a player's bid if the prize is worth v to him.
- One player who values the prize at v thinks about changing his bid from $\beta(v)$ to b. His expected payoff is

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

War of Attrition

- Both of us pay for the war, but only one of us wins the prize.
- I know what the prize is worth to me but do not know what it is worth to you.
- $f(v)$ is the probability density the prize is worth v to a player.
- $\beta(v)$ is a player's bid if the prize is worth v to him.
- One player who values the prize at v thinks about changing his bid from $\beta(v)$ to b. His expected payoff is

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume $\beta(v)$ is the player's payoff maximizing bid, that is,

$$
\pi(\beta(v)) \geq \pi(b)
$$

for all $b \geq 0$.

War of Attrition Maximization (1)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

War of Attrition Maximization (1)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

War of Attrition Maximization (1)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- Assume β is differentiable.

$$
\pi^{\prime}(b)=\frac{\left(v-\beta\left(\beta^{-1}(b)\right)\right) f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}-\left(1-F\left(\beta^{-1}(b)\right)\right)+\frac{b f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}
$$

War of Attrition Maximization (1)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- Assume β is differentiable.

$$
\pi^{\prime}(b)=\frac{\left(v-\beta\left(\beta^{-1}(b)\right)\right) f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}-\left(1-F\left(\beta^{-1}(b)\right)\right)+\frac{b f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}
$$

- Simplify.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

War of Attrition Maximization (1)

- Maximize the following at $b=\beta(v)$:

$$
\pi(b)=\int_{\beta(u)<b}(v-\beta(u)) f(u) d u-b \int_{\beta(u) \geq b} f(u) d u
$$

- Assume β is strictly increasing and F is the cdf of f.

$$
\pi(b)=\int_{0}^{\beta^{-1}(b)}(v-\beta(u)) f(u) d u-b\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- Assume β is differentiable.

$$
\pi^{\prime}(b)=\frac{\left(v-\beta\left(\beta^{-1}(b)\right)\right) f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}-\left(1-F\left(\beta^{-1}(b)\right)\right)+\frac{b f\left(\beta^{-1}(b)\right)}{\left.\beta^{\prime}\left(\beta^{-1}(b)\right)\right)}
$$

- Simplify.

$$
\left.\pi^{\prime}(b)=v f\left(\beta^{-1}(b)\right) / \beta^{\prime}\left(\beta^{-1}(b)\right)\right)-\left(1-F\left(\beta^{-1}(b)\right)\right)
$$

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

War of Attrition Maximization (2)

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

War of Attrition Maximization (2)

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

- Solve for β^{\prime}.

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

War of Attrition Maximization (2)

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

- Solve for β^{\prime}.

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

- Solve for β.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

which is differentiable and increasing where $f(v)>0$.

War of Attrition Maximization (2)

- First order necessary condition $\pi^{\prime}(\beta(v))=0$.

$$
0=v f(v) / \beta^{\prime}(v)-(1-F(v))
$$

- Solve for β^{\prime}.

$$
\beta^{\prime}(v)=\frac{v f(v)}{1-F(v)}
$$

- Solve for β.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

which is differentiable and increasing where $f(v)>0$.

- Verify we have found a maximum by substituting $\beta^{\prime}(v)$ expression back into formula for $\pi^{\prime}(b)$.

$$
\pi^{\prime}(b)=\left(1-F\left(\beta^{-1}(b)\right)\left(v / \beta^{-1}(b)-1\right)\right.
$$

which is positive if $b<\beta(v)$ and negative if $b>\beta(v)$.

War of Attrition Maximization (3)

- Optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

War of Attrition Maximization (3)

- Optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} f(v) d u d v
$$

War of Attrition Maximization (3)

- Optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} f(v) d u d v
$$

- Interchange integrals.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \frac{u f(u)}{1-F(u)} \int_{u}^{\infty} f(v) d v d u
$$

War of Attrition Maximization (3)

- Optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} f(v) d u d v
$$

- Interchange integrals.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \frac{u f(u)}{1-F(u)} \int_{u}^{\infty} f(v) d v d u
$$

- The average bid equals the average value.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} u f(u) d u
$$

War of Attrition Maximization (3)

- Optimal bidding strategy.

$$
\beta(v)=\int_{0}^{v} \frac{u f(u)}{1-F(u)} d u
$$

- Find the average bid.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \int_{0}^{v} \frac{u f(u)}{1-F(u)} f(v) d u d v
$$

- Interchange integrals.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} \frac{u f(u)}{1-F(u)} \int_{u}^{\infty} f(v) d v d u
$$

- The average bid equals the average value.

$$
\int_{0}^{\infty} \beta(v) f(v) d v=\int_{0}^{\infty} u f(u) d u
$$

- For some prize values v, the bid $\beta(v)$ is greater than the value!

Beauty Contest

Beauty Contest

- Each player will secretly write a number between 0 and 100 inclusive.

Beauty Contest

- Each player will secretly write a number between 0 and 100 inclusive.
- The median will be computed.

Beauty Contest

- Each player will secretly write a number between 0 and 100 inclusive.
- The median will be computed.
- The player whose number is closest to 70% of the median will win the prize.

Beauty Contest

- Each player will secretly write a number between 0 and 100 inclusive.
- The median will be computed.
- The player whose number is closest to 70% of the median will win the prize.
- Play now!

Beauty Contest

- Each player will secretly write a number between 0 and 100 inclusive.
- The median will be computed.
- The player whose number is closest to 70% of the median will win the prize.
- Play now!
- Find the distribution of guesses as well as the winner.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5 .

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.
- If everyone thought the way I just thought, the median will be 17. So, I should choose 12.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.
- If everyone thought the way I just thought, the median will be 17 . So, I should choose 12.
- This iterated process converges to 0 , the unique Nash equilibrium strategy.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.
- If everyone thought the way I just thought, the median will be 17 . So, I should choose 12.
- This iterated process converges to 0 , the unique Nash equilibrium strategy.
- But the reality is that not everyone thinks that deeply, and so I must think about how deeply my opponents will think.

Beauty Contest Theory

- If players choose randomly, the median will be 50 . So, I should choose 35.
- If everyone thought the way I just thought, the median will be 35 . So, I should choose 24.5.
- If everyone thought the way I just thought, the median will be 24.5 . So, I should choose 17.
- If everyone thought the way I just thought, the median will be 17 . So, I should choose 12.
- This iterated process converges to 0 , the unique Nash equilibrium strategy.
- But the reality is that not everyone thinks that deeply, and so I must think about how deeply my opponents will think.
- This is why stock market and housing bubbles persist even though everyone knows it will burst at some point.

MARPS

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.
- Rock smashes scissors (\$2 from scissors player to rock player).

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).
- Paper covers rock (\$1 from rock player to paper player) >

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).
- Paper covers rock (\$1 from rock player to paper player)>
- You receive the average playing against everyone else.

Monetary Asymmetric Rock-Paper-Scissors

- You against everyone else.
- Each player secretly writes rock, paper, or scissors.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).
- Paper covers rock (\$1 from rock player to paper player)>
- You receive the average playing against everyone else.
- Play now!

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.
- The two players simultaneously shout their choices.

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.
- The two players simultaneously shout their choices.
- Rock smashes scissors (\$2 from scissors player to rock player).

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.
- The two players simultaneously shout their choices.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.
- The two players simultaneously shout their choices.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).
- Paper covers rock (\$1 from rock player to paper player) >

Repeated Monetary Asymmetric Rock-Paper-Scissors

- Two players.
- Each player secretly chooses rock, paper, or scissors.
- The two players simultaneously shout their choices.
- Rock smashes scissors (\$2 from scissors player to rock player).
- Scissors cuts paper (\$2 from paper player to scissors player).
- Paper covers rock (\$1 from rock player to paper player) >
- Play it ten times with a single opponent now!

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.
- For self-interested players who only care about winning (and not by how much), rock $1 / 3$, paper $1 / 3$, and scissors $1 / 3$ is prudential and Nash.

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.
- For self-interested players who only care about winning (and not by how much), rock $1 / 3$, paper $1 / 3$, and scissors $1 / 3$ is prudential and Nash.
- But there is no incentive to mix properly if others are mixing properly.

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.
- For self-interested players who only care about winning (and not by how much), rock $1 / 3$, paper $1 / 3$, and scissors $1 / 3$ is prudential and Nash.
- But there is no incentive to mix properly if others are mixing properly.
- Players may be risk adverse or risk loving.

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.
- For self-interested players who only care about winning (and not by how much), rock $1 / 3$, paper $1 / 3$, and scissors $1 / 3$ is prudential and Nash.
- But there is no incentive to mix properly if others are mixing properly.
- Players may be risk adverse or risk loving.
- When asked to produce random sequences, people produce sequences that reliably deviate from random ones: too few long runs, too many alternations, and relative frequencies too close to event probabilities.

MARPS Results

- For self-interested and risk neutral players, rock 40%, paper 40%, and scissors 20% is prudential and Nash.
- For self-interested players who only care about winning (and not by how much), rock $1 / 3$, paper $1 / 3$, and scissors $1 / 3$ is prudential and Nash.
- But there is no incentive to mix properly if others are mixing properly.
- Players may be risk adverse or risk loving.
- When asked to produce random sequences, people produce sequences that reliably deviate from random ones: too few long runs, too many alternations, and relative frequencies too close to event probabilities.
- Biological interpretation.

Conclusions

Conclusions

- Games are fun!

Conclusions

- Games are fun!
- Game theory can sometimes model the behavior of people, nations, animals, genes, or other agents.

Conclusions

- Games are fun!
- Game theory can sometimes model the behavior of people, nations, animals, genes, or other agents.
- Preference models are crucial.

Conclusions

- Games are fun!
- Game theory can sometimes model the behavior of people, nations, animals, genes, or other agents.
- Preference models are crucial.
- Experimental work is having a strong impact.

Conclusions

- Games are fun!
- Game theory can sometimes model the behavior of people, nations, animals, genes, or other agents.
- Preference models are crucial.
- Experimental work is having a strong impact.
- There is a lot more for us to learn!

Bibliography

- Colin F. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction, Princeton University Press, 2003.
- Rick Gillman and David Housman, Models of Conflict and Cooperation, unpublished manuscript, 2008.
- Herbert Gintis, Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction, Princeton University Press, 2000.
- Philip D. Straffin, Game Theory and Strategy, Mathematical Association of America, 1993.
- Alan D. Taylor, Mathematics and Politics: Strategy, Voting, Power and Proof, Springer-Verlag, 1995.
- http://www.goshen.edu/~dhousman/research/ for these slides

