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Cooperative Game Review 
 

Definition.  A cooperative game is a set of players 

{1,2, , }N n  and a worth function w  from coalitions 

(nonempty subsets of players) to real numbers.  A 

cooperative game ( , )N w  is zero-monotonic if 

( ) ( {}) ({})w S w S i w i    for all i S N  . 

 

Example.  {1,2,3}N   and w  is as defined in the table. 

 

S  {1,2,3} {1,2} {1,3} {2,3} {1} {2} {3} 

( )w S  20 14 8 6 2 0 0 

 

Definition.  An allocation method is a function   from 

cooperative games to allocations (n -vectors of reals). 

 

Definition.  The Shapley value is an allocation method 

defined by 

 ( 1)! !
( , ) ( ) ( {})

!i
S N

s n s
N w w S w S i

n
  

 
 

 
    

where s  is the size of the coalition S .  We use the 

convention ( ) 0w   . 

 

Example. 

1
2!0! 1!1! 1!1! 0!2!( , ) 20 6 14 0 8 0 2 0 9
3! 3! 3! 3!

N w        
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Definitions.  The allocation method   is 

 efficient if ( , ) ( )
ii N

N w w N


  for all games ( , )N w .  “All 

of the potential savings are allocated.” 

 symmetric if 
( )

( , ) ( , )
ii

N w N w

    for all games ( , )N w , 

permutations   of N , and players i N , where the worth 

function w  is defined by ( )( ( )) ( )w S w S    for all 

coalitions S .  “A player’s name is irrelevant.” 

 dummy subsidy-free if ( , ) 0
i

N w   for all games ( , )N w  

and players i N  satisfying ( ) ( {})w S w S i   for all 

coalitions S N .  “Players who never contribute to the 

worth of any coalition receive nothing.” 

 additive if ( , ) ( , ) ( , )
i i i

N v w N v N w      for all games 

( , )N v  and ( , )N w .  “Accounting procedures are irrelevant.” 

 

Theorem (Shapley, 1953).  The Shapley value is the unique 

allocation method that is efficient, symmetric, dummy 

subsidy-free, and additive. 

 

S  N  {1,2} {1,3} {2,3} {1}  1
  

2
  

3
  

( )v S  12 6 6 6 0  4 4 4 
12( )u S  6 6 0 0 0  3 3 0 
1( )u S  2 2 2 0 2  2 0 0 

          ( )w S  20 14 8 6 2  9 7 4 
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Partially Defined Cooperative Games 
 

Definition.  A partially defined cooperative game (PDG) is 

a set of players {1,2, , }N n , a collection of coalitions C  

containing N , and a worth function w  from C  to reals.   

 

Example.  {1,2,3,4,5}N  , { :| | {1,4,5}}S N S  C , and w  is 

as defined in the table. 

S  12345 1234 1235 1245 1345 2345 i 
( )w S  600 480 480 360 180 60 0 

 

Definition.  An extension of the PDG ( , , )N wC  is a game 

( , )ˆN w  satisfying ( ) ( )ŵ S w S  for all SC . 

 

Example.  {1,2,3,4,5}N   and ŵ  is as defined in the table. 

S  12345 1234 1235 1245 1345 2345 i 
( )ŵ S  600 480 480 360 180 60 0 

 

S  123 124 125 134 135 145 234 235 245 345 
( )ŵ S  300 240 240 120 120 120 40 40 40 40 

 

S  12 13 14 15 23 24 25 34 35 45 
( )ŵ S  120 60 60 60 20 20 20 20 20 20 

 

Definition.  A PDG ( , , )N wC  is zero-monotonic if it has a 

zero-monotonic extension. 
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Definitions.  The allocation method   is 

 efficient if ( , , ) ( )
ii N

N w w N


 C  for all PDGs ( , , )N wC . 

 symmetric if 
( )

( , , ) ( , , )
ii

N w N w

   C C  for all PDGs 

( , , )N wC , permutations   of N , and players i N .   

 dummy subsidy-free if ( , , ) 0
i

N w C  for all PDGs ( , , )N wC  

and players i N  satisfying ( ) ( {})ˆ ˆw S w S i   for all 

coalitions S N  and zero-monotonic extensions ( , )ˆN w .   

 additive if ( , , ) ( , , ) ( , , )
i i i

N v w N v N w    C C C  for all 

PDGs ( , , )N vC  and ( , , )N wC .  

 

Theorem (Housman, 2001).  The Shapley value (with 0s 

substituted for the unknown coalitional worths) is the unique 

allocation method on zero-monotonic PDGs that is efficient, 

symmetric, dummy subsidy-free, and additive. 

 

S  N 1234 1235 1245 1345 2345 
1
  2 3 4 5 

1( )u S  60 0 0 0 0 60 0 15 15 15 15 
2( )u S  180 0 0 0 180 0 45 0 45 45 45 
3( )u S  360 0 0 360 0 0 90 90 0 90 90 
4( )u S  480 0 480 0 0 0 120 120 120 0 120 
5( )u S  480 480 0 0 0 0 120 120 120 120 0 

            
0( )u S  960 0 0 0 0 0 192 192 192 192 192 

( )w S  600 480 480 360 180 60 183 153 108 78 78 
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Why not use the Shapley Value? 
 

Five-player PDG: 

S  12345 1234 1235 1245 1345 2345 i 
( )w S  5 4 3 2 1 0 0 

 

Any zero-monotonic extension satisfies 

S  123 124 125 134 135 145 234 235 245 345 
( )ŵ S  3 2 2 1 1 1 0 0 0 0 

 

S  12 13 14 15 23 24 25 34 35 45 
( )ŵ S  0 0 0 0 0 0 0 0 0 0 

 
0 ( ) ( ) ( )ˆ ˆw ij w ijk w ijkl    

 

The Shapley Value of w  equals the Shapley Value of the 

extension ŵ  for which ( ) ( ) 0ˆ ˆw ij w ijk  .  

 

This is the apex of the “pyramid” of extensions.   

 

It gives player 1 the minimum payoff among all possible 

extension Shapley values. 

 

Additivity is too strong of a property because we ask for the 

allocations to add even when the sets of extensions do not. 
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Weakly Additive Values 
 

Definitions.  The allocation method   is 

 weakly additive if ( , , ) ( , , ) ( , , )
i i i

N v w N v N w    C C C  

whenever ext( , , ) ext( , , ) ext( , , )N v N w N v w  C C C . 

 proportional if ( , , ) ( , , )
i i

N aw a N w C C  for all real 

numbers a  and PDGs ( , , )N wC .  

 

Theorem.  Suppose { :| | {1, 1, }}S N S n n   C  and ext( )w  is 

the set of zero-monotonic extensions of the PDG ( , , )N wC . 

Then ext( ) ext( ) ext( )v w v w    if and only if there exists a 

permutation   of N  such that 

( { (1)}) ( { (2)}) ( { ( )})v N v N v N n         and 

( { (1)}) ( { (2)}) ( { ( )})w N w N w N n        . 

 

Suppose (1234) (1235) (1245) (1345) (2345)w w w w w    . 

1
2
3

4
5
 

1
2
3

4
 

1
2
3

5
 

1
2
4

5
 

1
3
4

5
 

2
3
4

5
 

1
  

2
  

3
  

4
  

5
  

1 1 1 1 1 1 1
5
 1

5
 1

5
 1

5
 1

5
 

1 1 1 1 1 0 4
1 a  1

44
a  1

44
a  1

44
a  1

44
a  

1 1 1 1 0 0 1
32

(1 )a  1
32

(1 )a  1
33

a  1
33

a  1
33

a  

1 1 1 0 0 0 1
23

(1 )a  1
23

(1 )a  1
23

(1 )a  1
22

a  1
22

a  

1 1 0 0 0 0 1
4

 1
4

 1
4

 1
4

 0  

1 0 0 0 0 0 1
5
 1

5
 1

5
 1

5
 1

5
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In the following, assume that { :| | {1, 1, }}S N S n n   C  and 

all extensions are zero-monotonic. 

 

Definition.  Suppose M N .  Define the PDG Mv  by 

( ) ( {}) 1M Mv N v N i    if i M  and ( ) 0Mv S   otherwise. 

 

Theorem.  If   is efficient and symmetric, then there are 

0 1
, , , na a a  satisfying 

1

1

, if 
( )

(1 ), if 
mmM

i
mn m

a i M
v

a i M






 




 
 

where 
0

0a   and 1na  .  If   is also dummy subsidy-free, 

then 
1

0a  .  If   is also additive, then ( 1)
( 1)

m m
m n n

a 


  for all m . 

 

Theorem.  The allocation method   is efficient, symmetric, 

dummy subsidy-free, proportional, and weakly additive if 

and only if 
1

( )

1
11

2

1
11

1

1

( ) ( { (1)})

[ ( { ( )}) ( { ( 1)})]

(1 )[ ( { ( )}) ( { ( 1)})]

[ ( ) ( { ( )})]

ni

i

n jn j
j

n

n jj
j i

n

w w N

a w N j w N j

a w N j w N j

w N w N n
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Geometric Approach 
 

Definition.  Let Te  be the game satisfying ( ) 1Te T   and 

( ) 0Te S   for all S T .   

 

Definition.  Suppose w  is a PDG.  The extension ŵ  is a 

coordinate center of ext( )w  if ŵ  is the midpoint of the line 

segment { : } ext( )ˆ Tw e w     for all coalitions T N . 

 

Theorem (Brutt, 1994).  For each zero-monotonic PDG, a 

coordinate center exists and is unique. 

 

 

Example.  The PDG 

 

S  12345 1234 1235 1245 1345 2345 i 
( )w S  600 480 480 360 180 60 0 

 

has coordinate center 

 

S  123 124 125 134 135 145 234 235 245 345 
( )ŵ S  300 240 240 120 120 120 40 40 40 40 

 

S  12 13 14 15 23 24 25 34 35 45 
( )ŵ S  120 60 60 60 20 20 20 20 20 20 
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Coordinate Center Value 
 

Definition.  The coordinate center value   is defined by 

( )w  is the Shapley value of the coordinate center of ext( )w . 

 

Theorem (Brutt, 1994).  The coordinate center value is 

given by the formula 
1

( )

1
11

2

1
11

1

1

( ) ( { (1)})

[ ( { ( )}) ( { ( 1)})]

(1 )[ ( { ( )}) ( { ( 1)})]

[ ( ) ( { ( )})]

ni

i

n jn j
j

n

n jj
j i

n

w w N

a w N j w N j

a w N j w N j

w N w N n


 

 

 



  


 
 

 

    

     

  





 

where 1
( 1)m

ma
n n m


 

 for 1,2, , 2m n   and 
1

1
2n

na
n
 .  

Thus, it is an efficient, symmetric, dummy subsidy-free, 

proportional, and weakly additive allocation method. 

 

Example.  The PDG 

 

S  12345 1234 1235 1245 1345 2345 i 
( )w S  600 480 480 360 180 60 0 

 

has the coordinate center value (224, 164, 94, 59, 59). 

 

Compare to the Shapley value (183, 153, 108, 78, 78). 
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Other Centers 
 

Centroid: 

o The center of mass of ext( )w . 

o Not weakly additive and difficult to compute. 

 

Coordinate Extrema Center:  

o 1( ) min{ ( ): ( )} max{ ( ): ( )}ˆ ˆ ˆ ˆ ˆ
2

w S u S u ext w u S u ext w 
 
 

     

o Theorem (Brutt, 1994).  The coordinate extrema center 

ŵ  of ext( )w  satisfies 1( ) min{ ( ): }ˆ
2

w S w T S T  .  

o So, the Shapley value of the coordinate extrema center 

is an efficient, symmetric, subsidy free, proportional, 

and weakly additive allocation method. 

 

Chebyshev Center: 

o The center of the smallest hypersphere containing 

ext( )w . 

o Theorem (Engelsone, 1999).  The Chebyshev center of 

ext( )w  is the coordinate extrema center of ext( )w . 
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Comparison 
 

N
 

1
2
3

4
 

1
2
3

5
 

1
2
4

5
 

1
3
4

5
 

2
3
4

5
 

Payoff to Strong Players 

S
h

ap
le

y
 

C
en

tr
o

id
 

C
h

eb
y

sh
ev

 

C
o

o
rd

in
at

e 

M
ax

 f
o

r 
1

 

1 1 1 1 1 0 .400 .583 .600 .600 .800 

1 1 1 1 0 0 .350 .420 .425 .433 .500 

1 1 1 0 0 0 .300 .317 .317 .317 .333 

1 1 0 0 0 0 .250 .250 .250 .250 .250 

1 0 0 0 0 0 .200 .200 .200 .200 .200 

 

N
 

1
2
3

4
 

1
2
3

5
 

1
2
4

5
 

1
3
4

5
 

2
3
4

5
 

Payoff to Weak Players 

S
h

ap
le

y
 

C
en

tr
o

id
 

C
h

eb
y

sh
ev

 

C
o

o
rd

in
at

e 

M
ax

 f
o

r 
1

 

1 1 1 1 1 1 .200 .200 .200 .200 .200 

1 1 1 1 1 0 .150 .104 .100 .100 .050 

1 1 1 1 0 0 .100 .053 .050 .045 .000 

1 1 1 0 0 0 .050 .025 .025 .025 .000 

1 1 0 0 0 0 .000 .000 .000 .000 .000 
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Comparison 

 

N
 

1
2
3

4
 

1
2
3

5
 

1
2
4

5
 

1
3
4

5
 

2
3
4

5
 

Shapley Value 

1
  

2
  

3
  

4
  

5
  

1 1 1 1 1 1 .20 .20 .20 .20 .20 

1 1 1 1 1 0 .40 .15 .15 .15 .15 

1 1 1 1 0 0 .35 .35 .10 .10 .10 

1 1 1 0 0 0 .30 .30 .30 .05 .05 

1 1 0 0 0 0 .25 .25 .25 .25 .00 

 

N
 

1
2
3

4
 

1
2
3

5
 

1
2
4

5
 

1
3
4

5
 

2
3
4

5
 

Coordinate Center Value 

1
  

2
  

3
  

4
  

5
  

1 1 1 1 1 1 .200 .200 .200 .200 .200 

1 1 1 1 1 0 .600 .100 .100 .100 .100 

1 1 1 1 0 0 .433 .433 .044 .044 .044 

1 1 1 0 0 0 .317 .317 .317 .025 .025 

1 1 0 0 0 0 .250 .250 .250 .250 .000 

 

N
 

1
2
3

4
 

1
2
3

5
 

1
2
4

5
 

1
3
4

5
 

2
3
4

5
 

Shapley Coord Center 

strong weak strong weak 

1 1 1 1 1 1  .20  .200 

1 1 1 1 1 0 .40 .15 .600 .100 

1 1 1 1 0 0 .35 .10 .433 .044 

1 1 1 0 0 0 .30 .05 .317 .025 

1 1 0 0 0 0 .25 .00 .250 .000 
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Other Past Results and Future Work 

 
Generalize zero-monotonic PDGs on { :| | {1, 1, }}S N S n n    

to arbitrary C . 

 

Axiomatically characterize the coordinate center value. 

 

Consider other types of extensions, including superadditive 

and convex games. 

 

Consider other types of centers, including centroid, extreme 

coordinate center, and Chebyshev center. 


