H2O2 – The Watery Fiend



M. Yoder and D. Bontrager
The Circuit
H2O2 is designed to find a heat source and release a jet of water in the direction of the source. The primary components of the circuit are listed below, not including various analog components.

· 16F88 PIC microcontroller

· 74HC00 Quad NAND Gate chip

· L289N dual H-bridge

· Two geared-down DC motors

· Automotive windshield washer pump

· LCD screen

· TPA81 infrared heat sensor

· GP2D02 distance sensor

· HS-700BB servo

· Two LM2940T 5 volt power regulators

· 2N3904 transistor

· TIP31 power transistor

· Two 6 volt batteries

· 9 volt battery

The two six volt batteries are attached in series to one of the 5 V regulators, which gives power to the majority of the circuit. The 9 V battery goes through the other 5 V regulator, which powers the microcontroller alone. This is to prevent the chip from resetting to the beginning of the program when the pump turns on (the pump draws enough current that the power supply drops below the chip’s limit and the chip resets). 

The L298N chip runs the H-bridge. This works by having an (enable), a (+), and a (-) line for each motor. When (enable) is high, the motor runs at full speed. When (enable) is low, the motor is off. The speed of motor can be adjusted by pulsing the (enable) line and changing the duty cycle. The (+) and (-) are always opposite of each other, so to cut down on the number of lines coming out of the microcontroller, we use only one line. We pull the (+) line straight off the microcontroller, and then put a line from that same pin through a NAND gate acting as an inverter, and used the output of that as the (-) input. When the (+) line is high – and therefore (-) is low – the motor will go forwards, and will go the other direction when the lines are switched. The H-bridge board has a power and a ground line for the chip. For output, two lines – (+) and (-) – go out to the motors, with a line in coming straight from the switched 12 V batteries to put that level of power out to the motors.

The DC motors and the windshield washer pump are powered by a plain 12 V signal. The H-bridge controls the power for the wheel motors. The transistors, switched by the microcontroller, control the current for the pump. The microcontroller switches the 2N3904 transistor through a 500 Ω resistor. The collector comes from +5 V; emitter goes to ground through a 100 Ω resistor and also to the base of the TIP31 power transistor. The emitter of the TIP31 goes to ground, and the collector comes from the pump ground line. The positive line on the pump is connected to the switched 12 V power source.

The LCD screen is communicated to with a serial line. Using the SEROUT command, it is a simple matter to send commands to the screen with minimal coding, as the word conversion into ASCII is already in the compiler. The TPA81 thermal sensor array uses the I2C interface to communicate with it, and includes a chip (also a 16F88) that is used to control the servo position (32 preset positions are programmed in). After a new position is moved to, it takes about 40 ms for the sensor readings to refresh. The sensor has ten registers: one to write to (for controlling servo position), one for reading ambient temperature, and one for each of the eight pixels in the sensor. The sensor uses two lines from the microcontroller: one data line (an input on the 16F88), and one clock line (an output on the 16F88). 

The data transmission is synchronous serial. PIC Basic Pro has simple I2CREAD and I2CWRITE commands that are used to communicate with an I2C bus (for reading the temperatures and telling the chip what position to move the servo to). In order to start communicating with the sensor, the data line must be brought low while the clock line is still high. Finishing communication is merely bringing the data line high while the clock line is high (see Figure 1). Normally the data line only changes when the clock line is changing, and not while the clock line is constant. The pixels can read light in the 2 µm – 22 µm range (infrared light). Input received from the chip is a number between 0 and 255 (higher number means higher temperature), sent in serial to the microcontroller.

[image: image1.wmf]*Figure 1
Collision avoidance is achieved with the use of a GP2D02 Sharp distance sensor. With an approximate range of 10 cm – 80 cm, it sends out an infrared beam and measures the angle of reflection and translates that into the distance. This sensor also uses a data line and a clock line for synchronous serial transmission. The number received is between 0 and 255, but a higher number means the object is closer (see Graph 1). In order to start reading from the sensor, the clock line has to be brought low for 70 ms, and then brought high (see Figure 2). The SHIFTIN command is used to read the byte of information sent.

[image: image2.png]Fig. 1 Distance Measuring Output vs.
Distance to Reflective Object

220 White paper: KODAK made gray chat
200 white surface (relectivity
c Gray paper : KODAK made gray chart R-27,
D180 gray surfce (eflectivity : 18%)

a
160
ES White
s 140
5
2 120
100
E 80
g 60
40 Gray
20
0

0 20 40 60 80 100 120 140

Distance to reflective object L (cm)



*Graph 1
[image: image3.wmf]*Figure 2
The HS-700BB servo is controlled via the standard pulse-width modulation. By varying the pulse width from 1.0 ms to 2.0 ms and 20 ms in between pulses, the position (with a range of 180°) changes dependant on the length of each pulse. 1.0 ms represents being all the way to one side, 1.5 ms is in the center, and 2.0 ms is all the way to the other side. Luckily, the thermal sensor chip controls this, so all our program has to do is send one line of code to the sensor, and it changes the servo position and holds it until the next position command is received. The 5 V regulators are used to step down voltage from the 12 V and 9 V supplies and give a fairly constant 5 V supply.

In addition to the digital components, different analog components are utilized as well. Multiple resistors are used for pull-up/pull-down purposes, as well as to limit current in certain areas. For example, the resistors by the transistors are used to control the current flowing through the pump and keep it around 2 A. A resistor is in series with an LED that acts as an indicator light for the pump. This way we did not have to have the pump in use during the testing/troubleshooting phase of the project. A “snubber” diode is across the power and ground lines of the pump, with the direction allowing current to flow from ground to power, in the case of a buildup of voltage across the pump when the power is shut off to it. To use in conjunction with the LCD screen, two pushbuttons (pressed is on, natural state is off) are used to scroll through a menu system at startup.

The Program
The program starts out by setting all sensor data and clock lines high (as they must be pulled low to initiate the reading sequence), and the motor (enable) lines are set low to make sure they don’t float high enough to turn on the motors before we want them to. Startup goes into a menu with stationary and mobile mode options, using the buttons to scroll/select one of these two modes (red button is scroll, black is select). When the enter button is pressed, we are sent to the BRANCH command, which, depending on the mode selected, sends us to the stationary mode (“planted”) or the mobile mode (“mobile”).

The stationary mode starts out by reading the ambient temperature, and then sets the minimum temperature at which an object is squirted by adding a constant offset to the ambient temperature. Human bodies have tended to be around 155 – 160, so, with general ambient temperature being around 150, our offset was experimentally determined to work best when set at 5 or 6. The program then continues, using the FOR… NEXT command to sweep the sensor back and forth (starting at the far left side), taking a reading at each of the 32 preset positions, reading the temperature into an array. If the read temperature is high enough, the program jumps to the “fire” label, which turns on the pump and squirts whatever was warm. The squirt nozzle is also mounted on the sweep arm, allowing it to be lined up with where the sensor is pointing, negating the need for unnecessary adjustments. After squirting, it checks three times to see if the heat source is gone. If it is not gone, it squirts again. When all the squirting is done, it returns to the sweeping sequence, and carries on in the sweep, sweeping back and forth until shut off.

If the mobile mode is selected, the robot begins in the same way as the stationary mode, reading the ambient temperature and all. Upon setting the minimum squirting temperature, it begins moving forward and sweeping back and forth in the same way as in the stationary mode. The mobile mode has an extra couple lines of code in the sweep command sequence, telling it to check the distance in the ten central positions of the sweep servo. If the distance is below a certain value (roughly equivalent to 1.0 m), the robot will turn away from the obstacle, backing up if the obstacle is too close. The only difference in the firing sequence is that the motors are turned off in this case, stopping the robot for the duration of the squirt.

