Problem 6.15 - Uniformly magnetized sphere

Find the magnetic field inside and outside a uniformly magnetized sphere.

It was pointed out that the curl of the auxiliary field is zero, so there's a potential such that $\vec{\nabla}W\!=\vec{\mathbf{H}}.$ And...

- $\nabla^2 W = 0$: That is, $\vec{\mathbf{W}}$ satisfies Laplace's equation.
- W is continuous across the boundary of the sphere at r = R.

The most general solution to Laplace's equation for azimuthally symmetric conditions in spherical coordinates can be written in terms of the Legendre polynomials.

$$W = \sum_{l=0}^{\infty} \left(A_l r^l + B_l \frac{1}{r^{l+1}} \right) P_l(\cos \theta). \qquad \qquad l \qquad P_l(\cos \theta)$$
ouple of Legendre polynomials are given in the table. 0 1

Where the first couple of Legendre polynomials are given in the table.	0	1
	1	$\cos heta$
	2	$rac{1}{2}\left(3\mathrm{cos}^2 heta-1 ight)$
	3	$\frac{1}{2}(5\cos^3\theta - 3\cos\theta)$

We'll use boundary conditions to simplify the general solution:

Outside the sphere, the potential $W_{\text{out}}(r,\theta)$ should not diverge as $r \to \infty$. This allows you to set either all the A_l s or all the B_l s to zero. Write down the form of the solution outside the sphere that has only finite terms as $r \to \infty$.

 $W_{\rm out} =$

Inside the sphere, $W_{\rm in}(r,\theta)$ needs to stay finite as $r \to 0$. Starting from the most general solution, write down a simpler version, $W_{\rm in}$, that obeys this constraint:

 $W_{\rm in} =$

At the surface of the sphere (r = R):

$$H^{
m out}_\perp - H^{
m in}_\perp = -(M^{
m out}_\perp - M^{
m in}_\perp).$$

Evaluate the following derivatives:

(1)

•
$$\left. H_{\perp}^{\mathrm{out}} \right|^{r=R} = -\frac{\partial}{\partial r} W_{\mathrm{out}} \right|^{r=R} =$$

•
$$\left. H_{\perp}^{\mathrm{in}} \right|^{r=R} = - \frac{\partial}{\partial r} \left. W_{\mathrm{in}} \right|^{r=R} =$$

- $M_{\perp}^{\text{outside}} = ?.$
- $M_{\perp}^{\text{inside}} = \vec{\mathbf{M}}_r = (M_0 \hat{\mathbf{z}})_r = M_0 \cos \theta = M_0 P_n (\cos \theta).$ Which Legendre polynomial is this? That is...n = ?

Write out (1) in terms of the four quantities above:

{eq *1}

Since the Legendre polynomials are orthogonal, only the the terms where l = n are other than zero. Write out $\{1^*\}$ for the particular integer for which this is true:

{eq *2}

Now, use the continuity of \boldsymbol{W} across the surface of the sphere:

$$W_{
m in}(r=R)=W_{
m out}(r=R)$$

Substitute your expressions for the potential inside and outside, and solve this for the coefficients B_n .

{eq *3}

Substitute this B_n into $\{2^*\}$ to solve for A_n :

{*4}

OK, so now you should be in good position to write down a fairly simple expression for $W_{\rm in}$. Do that, and then figure out $\vec{\mathbf{H}}_{\rm in} = -\vec{\nabla} W_{\rm in}$.

{eq *5}

Finally, substitute your $\vec{\bf H}$ into $\vec{\bf B}=\mu_0(\vec{\bf H}+\vec{\bf M})$ to calculate the $\vec{\bf B}$ -field. {eq *6}

Which of these pictures is the \vec{B} -field and which is the \vec{H} -field?

