Problem 6.15-Uniformly magnetized sphere

Find the magnetic field inside and outside a uniformly magnetized sphere.

It was pointed out that the curl of the auxiliary field is zero, so there's a potential such that $\vec{\nabla} W=\overrightarrow{\mathbf{H}}$. And...

- $\nabla^{2} W=0$: That is, $\overrightarrow{\mathbf{W}}$ satisfies Laplace's equation.
- W is continuous across the boundary of the sphere at $r=R$.

The most general solution to Laplace's equation for azimuthally symmetric conditions in spherical coordinates can be written in terms of the Legendre polynomials.

$$
W=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+B_{l} \frac{1}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

$l \quad P_{l}(\cos \theta)$
Where the first couple of Legendre polynomials are given in the table.
$0 \quad 1$

$$
\begin{array}{ll}
1 & \cos \theta \\
2 & \frac{1}{2}\left(3 \cos ^{2} \theta-1\right) \\
3 & \frac{1}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right)
\end{array}
$$

We'll use boundary conditions to simplify the general solution:
Outside the sphere, the potential $W_{\text {out }}(r, \theta)$ should not diverge as $r \rightarrow \infty$. This allows you to set either all the A_{l} s or all the B_{l} s to zero. Write down the form of the solution outside the sphere that has only finite terms as $r \rightarrow \infty$.
$W_{\text {out }}=$

Inside the sphere, $W_{\text {in }}(r, \theta)$ needs to stay finite as $r \rightarrow 0$. Starting from the most general solution, write down a simpler version, $W_{\text {in }}$, that obeys this constraint:
$W_{\text {in }}=$

At the surface of the sphere $(r=R)$:

$$
H_{\perp}^{\text {out }}-H_{\perp}^{\mathrm{in}}=-\left(M_{\perp}^{\text {out }}-M_{\perp}^{\text {in }}\right)
$$

(1)

Evaluate the following derivatives:

- $\left.H_{\perp}^{\text {out }}\right|^{r=R}=-\left.\frac{\partial}{\partial r} W_{\text {out }}\right|^{r=R}=$
- $\left.H_{\perp}^{\mathrm{in}}\right|^{r=R}=-\left.\frac{\partial}{\partial r} W_{\mathrm{in}}\right|^{r=R}=$
- $M_{\perp}^{\text {outside }}=$?.
- $M_{\perp}^{\text {inside }}=\overrightarrow{\mathbf{M}}{ }_{r}=\left(M_{0} \hat{\mathbf{z}}\right)_{r}=M_{0} \cos \theta=M_{0} P_{n}(\cos \theta)$. Which Legendre polynomial is this? That is... $n=$?

Write out (1) in terms of the four quantities above:
\{eq*1\}

Since the Legendre polynomials are orthogonal, only the the terms where $l=n$ are other than zero. Write out $\left\{1^{*}\right\}$ for the particular integer for which this is true:

```
{eq*2}
```

Now, use the continuity of W across the surface of the sphere:

$$
W_{\text {in }}(r=R)=W_{\text {out }}(r=R)
$$

Substitute your expressions for the potential inside and outside, and solve this for the coefficients B_{n}.
\{eq *3\}

Substitute this B_{n} into $\left\{2^{*}\right\}$ to solve for A_{n} :
$\{* 4\}$

OK, so now you should be in good position to write down a fairly simple expression for $W_{\text {in }}$. Do that, and then figure out $\overrightarrow{\mathbf{H}}_{\text {in }}=-\vec{\nabla} W_{\text {in }}$.
\{eq *5\}

Finally, substitute your $\overrightarrow{\mathbf{H}}$ into $\overrightarrow{\mathbf{B}}=\mu_{0}(\overrightarrow{\mathbf{H}}+\overrightarrow{\mathbf{M}})$ to calculate the $\overrightarrow{\mathbf{B}}$-field.
\{eq *6\}

Which of these pictures is the $\overrightarrow{\mathbf{B}}$-field and which is the $\overrightarrow{\mathbf{H}}$-field?

