## Variation in radiation counts



What to make of the variation in radiation counts?

Statistics:

- Min 5 at 363; Max 33 at 1447
- Mean 16.28; Median 16
- $\bullet$  Std. dev. 4.095 pprox 4.1

## **Standard deviation**

Here are the first 20 1-minute counts for the "all day" GC counting:

| Time (min) | Counts / 1 min | Counts-Ave = dev     | dev^2        | within 1 std? | within 2 std? |
|------------|----------------|----------------------|--------------|---------------|---------------|
| 1          | 14             | -3.65                | 13.3         | 1             | 1             |
| 2          | 17             | -0.65                | 0.4          | 1             | 1             |
| 3          | 25             | 7.35                 | 54.0         | 0             | 1             |
| 4          | 11             | -6.65                | 44.2         | 0             | 1             |
| 5          | 12             | -5.65                | 31.9         | 0             | 1             |
| 6          | 18             | 0.35                 | 0.1          | 1             | 1             |
| 7          | 13             | -4.65                | 21.6         | 0             | 1             |
| 8          | 23             | 5.35                 | 28.6         | 0             | 1             |
| 9          | 11             | -6.65                | 44.2         | 0             | 1             |
| 10         | 22             | 4.35                 | 18.9         | 1             | 1             |
| 11         | 18             | 0.35                 | 0.1          | 1             | 1             |
| 12         | 17             | -0.65                | 0.4          | 1             | 1             |
| 13         | 18             | 0.35                 | 0.1          | 1             | 1             |
| 14         | 23             | 5.35                 | 28.6         | 0             | 1             |
| 15         | 14             | -3.65                | 13.3         | 1             | 1             |
| 16         | 23             | 5.35                 | 28.6         | 0             | 1             |
| 17         | 20             | 2.35                 | 5.5          | 1             | 1             |
| 18         | 13             | -4.65                | 21.6         | 0             | 1             |
| 19         | 18             | 0.35                 | 0.1          | 1             | 1             |
| 20         | 23             | 5.35                 | 28.6         | 0             | 1             |
|            |                |                      |              |               |               |
| Averages-> | 17.65          | 1.42109E-15          | 19.2275      |               |               |
|            |                | Sqrt(dev^2)->        | 4.4          |               |               |
|            | Rang           | e: average+- 1 "std" | 13.2 to 22.1 |               |               |
|            |                |                      |              |               |               |

- "Mean" = average
- "Median": Half the measurements are above this value, half are below.
- The "deviation" for one particular measurement is dev= Counts - average(Counts).
- Why is the average of the deviations not useful for talking about how much variation there is in the data?
- The "Standard deviation",  $\sigma$ , for our purposes is:

$$\sigma = \sqrt{\text{Average}(\text{dev}^2)}.$$
 (1)

In a course on probability and statistics, you would find that for many kinds of random processes:

- 68% of measurements are between  $\operatorname{ave} \sigma$  and  $\operatorname{ave} + \sigma$ .
- 95% of measurements are between  $\mathrm{ave}-2\sigma$  and  $\mathrm{ave}+2\sigma.$
- 99.7% of measurements are between  $ave 3\sigma$  and  $ave + 3\sigma$ .

• ...

## GC data

Here are the histograms from the 1 minute counts and the 10-minute averages for the GC data:



There is a trick we can use to connect the standard deviation of the 1-minute counts with the width of the 10-min average histogram....