Variation in radiation counts

What to make of the variation in radiation counts?

Statistics:

- Min 5 at 363; Max 33 at 1447
- Mean 16.28; Median 16
- Std. dev. $4.095 \approx 4.1$

Standard deviation

Here are the first 20 1-minute counts for the "all day" GC counting:

| Time (min) | Counts / 1 min | Counts-Ave = dev | dev^2 | | within 1 std? within 2 std? |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 14 | -3.65 | 13.3 | 1 | 1 |
| 2 | 17 | -0.65 | 0.4 | 1 | 1 |
| 3 | 25 | 7.35 | 54.0 | 0 | 1 |
| 4 | 11 | -6.65 | 44.2 | 0 | 1 |
| 5 | 12 | -5.65 | 31.9 | 0 | 1 |
| 6 | 18 | 0.35 | 0.1 | 1 | 1 |
| 7 | 13 | -4.65 | 21.6 | 0 | 1 |
| 8 | 23 | 5.35 | 28.6 | 0 | 1 |
| 9 | 11 | -6.65 | 44.2 | 0 | 1 |
| 10 | 22 | 4.35 | 18.9 | 1 | 1 |
| 11 | 18 | 0.35 | 0.1 | 1 | 1 |
| 12 | 17 | -0.65 | 0.4 | 1 | 1 |
| 13 | 18 | 0.35 | 0.1 | 1 | 1 |
| 14 | 23 | 5.35 | 28.6 | 0 | 1 |
| 15 | 14 | -3.65 | 13.3 | 1 | 1 |
| 16 | 23 | 5.35 | 28.6 | 0 | 1 |
| 17 | 20 | 2.35 | 5.5 | 1 | 1 |
| 18 | 13 | -4.65 | 21.6 | 0 | 1 |
| 19 | 18 | 0.35 | 0.1 | 1 | 1 |
| 20 | 23 | 5.35 | 28.6 | 0 | 1 |
| | | | | 1 | 1 |
| | 17.65 | $1.42109 E-15$ | 19.2275 | | 1 |

- "Mean" = average
- "Median": Half the measurements are above this value, half are below.
- The "deviation" for one particular measurement is

dev= Counts - average(Counts).

- Why is the average of the deviations not useful for talking about how much variation there is in the data?
- The "Standard deviation", σ, for our purposes is:

$$
\begin{equation*}
\sigma=\sqrt{\text { Average }\left(\operatorname{dev}^{2}\right)} . \tag{1}
\end{equation*}
$$

In a course on probability and statistics, you would find that for many kinds of random processes:

- 68% of measurements are between ave $-\sigma$ and ave $+\sigma$.
- 95% of measurements are between ave -2σ and ave $+2 \sigma$.
- 99.7% of measurements are between ave -3σ and ave $+3 \sigma$.
- ...

GC data

Here are the histograms from the 1 minute counts and the 10 -minute averages for the GC data:

There is a trick we can use to connect the standard deviation of the 1-minute counts with the width of the $10-\mathrm{min}$ average histogram....

