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The effective potential (Taylor's equation 8.32) is
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There is an equilibrium at the minimum of U. So we should solve %Ueff = 0 for 7, and call this 7, the equilibrium

distance.

Var(‘G m_ e m.s ell mu|)
Ue(r)=-G*m_e*m_s/r+ellA2/(2*mu*rA2)
show(Ue(r))

$$-\frac{G m_{e} m_{s}}r} + \frac{\mathit{el}*{2}}{2 \, \mu r*{2}}$$

show( diff(Ue(r),r))
show(solve( diff(Ue(r),r)==0, r))
r_0=ellr2/(G*m_e*m_s*mu)

$S\frac{G m_{e} m_{s}Hr*{2}} - \frac{\mathit{ell}*{2}}{\mu r*{3}}$$
$S\left[r = \frac{\mathit{ell}"{2}{G m_{e} m_{s} \mu}\right]$$
There is minimum of Ut at r = 7o = Gmg_’zmu

The "spring constant"is k = %Ueff o

# I'll name the second derivative of U as Udp(r), that is, "U double prime"
Udp(r)=diff(Ue(r),r,2)

show('Udp(r)=",Udp(r))

show('Udp(r_0)=k=",Udp(r_0))

$S\verb|Udp(r)=| -\frac{2 \, G m_{e} m_{s}}{r*{3}} + \frac{3 \, \mathit{el}*{2}}{\mu r*{4}}$$
$S\verb|Udp(r_0)=k=| \frac{G*{4} m_{e}*{4} m_{s}*{4} \mu3}}{\mathit{ell}*{6}}$$

OK, let's now start to approximate p =~ m, so this result is

b ~ G'mIm?
N —p
and therefore, the angular frequency of oscillations is
A~ k _ G*mSm? _ G*m2m?
- Iz £

me

Now, cast an eye at equation 8.23 which is just re-arranging the formula for angular momentum £ = mrzé:

. 4
b= 7
For the earth-sun system, when 7 = rq, the angular speed is constant. Let's write this as qb = We. And,
approximating 1t & me:
l

merd

We =

, and the angular frequency of small oscillations is w ~ +/k/me..

(*)

We would love to show that w = w, . But how? The key is to re-examine our solution for the equilibrium separation, rg

which connects 7 to the angular momentum £, and the gravitational constant G. It was
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Now, re-examining the formula for w, (and using equation (*)):

G*mim?
1
24,2
= 2
G*m_m; — (2)
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