
Clear["Global`*"]

U := u0 * (r / R + λ^2 * R / r)

What does it look like??  First term is a line with slope 1/R, second term is ~1/r, exploding as r->0:

Plot[U /. {u0 → 1, R → 1, λ → 5}, {r, 0.0001, 15}]
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Position of minimum occurs where dU/dr = 0
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solve (1/R-Rλ^2/r^2 = 0) for r

Solve[R^(-1) - (R * λ^2) / r^2 == 0, r]

.

{{r → -R λ}, {r → R λ}}

We’ll just take the positive solution, and call this r0.  For the values of the graph above, this should be 
r0=5.  Looks plausible.

r0 = R * λ

R λ

The effective spring constant, k, is the curvature (second derivative) evaluated at the position of the 
minimum.

D[D[U, r], r]
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The angular frequency of oscillation is ω= k
m

, that is ....



The angular frequency of oscillation is ω= k
m

, that is ....

Sqrt[k / m]
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Ub = U /. {u0 → 1, R → 1, λ → 5, r → 5}
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kb = k /. {u0 → 1, R → 1, λ → 5}
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Ub + 0.5 kb * (r - 5)^2

10 + 0.2 (-5 + r)2

PlotU /. {u0 → 1, R → 1, λ → 5}, 10 +
1

2
kb * (r - 5)^2, {r, 4, 6}
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