Finding eigenvalues and eigenvectors of matrices in CoCalc

Oops! we got $2\pm\sqrt{3}=2\pm1.73205...$ But the eigenvalues of this matrix were actually imaginary. What went wrong??

That was my fault! I wrote down the quadratic formula with the wrong sign of things under the square root: The solutions of $ax^2 + bx + c = 0$ are actually:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

So the argument of the square root was negative! Try another matrix:

```
In [10]: M=matrix([[4,-1],[2,1]]) show(M)

Out[10]: \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}
```

The characteristic polynomial--the determinant of the matrix $(\mathbb{M} - \lambda 1) = 0$ -- is $(4 - \lambda)(1 - \lambda) - (-1)(2) = 0$. Solve the quadratic to find λ :

Out[13]: [(3,[(1,1)],1),(2,[(1,2)],1)]

The response is a pair of *triples*. The first triple contains an **eigenvalue** (3) followed by the corresponding **eigenvector** (the column vector (1,1)), followed by the **multiplicity** or degeneracy of the eigenvalue (1).

Let's test the first eigenvector. Multiplying the matrix \mathbb{M} by the first eigenvector should produce a vector which is 3 times the eigenvector...(and also test the second...)

```
In [15]:
         ev1=matrix([[1],[1]]); ev2=matrix([[1],[2]])
         show(ev1)
         show(M*ev1)
         print("Ah-ha, ev1 is an eigenvector with eigenvalue 3\n\n")
         show(ev2)
         show(M*ev2)
         print("And M*ev2 gives 2*ev2!")
Out[15]:
         Ah-ha, ev1 is an eigenvector with eigenvalue 3
         And M*ev2 gives 2*ev2!
In [19]: # You can "normalize" a vector to 1 by multiplying by 1/(Norm of the
         print("Norm of ev1 is ",ev1.norm(), " that is, the sqrt of (1^2+1^2).")
         nev1=(1/ev1.norm())*ev1
         show(nev1)
Out[19]: Norm of ev1 is 1.4142135623730951 that is, the sqrt of (1^2+1^2).
           0.7071067811865475
0.7071067811865475
```

Using imaginary numbers

Sagemath defines the symbol I to mean $i = \sqrt{-1}$.

E.g. the S_y matrix is this matrix:

```
In [22]: hbar=var('hbar')
```

Sy=hbar/2*matrix([[0,-I],[I,0]])
show(Sy)

Out[22]:
$$\left(egin{array}{cc} 0 & -rac{1}{2}i\,hbar \ rac{1}{2}i\,hbar & 0 \end{array}
ight)$$

In [23]: | show(Sy.eigenvectors_right())

$$\boxed{\left[\left(-\frac{1}{2}\,hbar,\left[\left(1,\,-i\right)\right],1\right),\left(\frac{1}{2}\,hbar,\left[\left(1,\,i\right)\right],1\right)\right]}$$