The effective potential (Taylor's equation 8.32) is

$$
U_{\mathrm{eff}}=\frac{-G m_{e} m_{s}}{r}+\frac{\ell^{2}}{2 \mu r^{2}}
$$

There is an equilibrium at the minimum of $U_{\text {eff }}$. So we should solve $\frac{d}{d r} U_{\text {eff }}=0$ for r, and call this r_{0}, the equilibrium distance.

In [8]:

```
var('G m_e m_s ell mu')
Ue(r)=-G*m_e*m_s/r+ell^2/(2*mu*r^2)
show(Ue(r))
```

Out [8]: \$\$-\frac\{G m_\{e\} m_\{s\}\}\{r\} + \frac\{\mathit\{ell\}^\{2\}\}\{2 \, \mu r^\{2\}\}\$\$

In [6]:

```
show( diff(Ue(r),r))
show(solve( diff(Ue(r),r)==0, r))
\(r \_0=e l l \wedge 2 /\left(G * m \_e * m \_s * m u\right)\)
```

Out [6]: \$\$\frac\{G m_\{e\} m_\{s\}\}\{r^\{2\}\}-\frac\{\mathit\{ell\}^\{2\}\}\{\mu r^\{3\}\}\$\$
\$\$\left[r = \frac\{\mathit\{ell\}^\{2\}\}\{G m_\{e\} m_\{s\} \mu\}\right]\$\$
There is minimum of $U_{\text {eff }}$ at $r=r_{0}=\frac{\ell^{2}}{G m_{e} m_{s} \mu}$.
The "spring constant" is $k=\left.\frac{d^{2}}{d r^{2}} U_{\text {eff }}\right|^{r=r_{0}}$, and the angular frequency of small oscillations is $\omega \approx \sqrt{k / m_{e}}$.

In [7]:

```
# I'll name the second derivative of U as Udp(r), that is, "U double prime"
Udp(r)=diff(Ue(r),r,2)
show('Udp(r)=',Udp(r))
show('Udp(r_0)=k=',Udp(r_0))
```

Out[7]:
\$\$\verb|Udp(r)=| -\frac\{2 \, G m_\{e\} m_\{s\}\}\{r^\{3\}\} + \frac\{3 \, \mathit\{ell\}^\{2\}\}\{\mu r^\{4\}\}\$\$
\$\$\verb|Udp(r_0)=k=| \frac\{G^\{4\} m_\{e\} $\left.{ }^{\wedge}\{4\} m_{-}\{s\}^{\wedge}\{4\} \backslash m u^{\wedge}\{3\}\right\}\left\{\backslash\right.$ mathit $\left.\{e l l\}^{\wedge}\{6\}\right\} \$ \$$
OK, let's now start to approximate $\mu \approx m_{e}$ so this result is

$$
k \approx \frac{G^{4} m_{e}^{7} m_{s}^{4}}{\ell^{6}}
$$

and therefore, the angular frequency of oscillations is

$$
\omega \approx \sqrt{\frac{k}{m_{e}}}=\sqrt{\frac{G^{4} m_{e}^{6} m_{s}^{4}}{\ell^{6}}}=\frac{G^{2} m_{e}^{3} m_{s}^{2}}{\ell^{3}}
$$

Now, cast an eye at equation 8.23 which is just re-arranging the formula for angular momentum $\ell=m r^{2} \dot{\phi}$:

$$
\dot{\phi}=\frac{\ell}{\mu r^{2}}
$$

For the earth-sun system, when $r=r_{0}$, the angular speed is constant. Let's write this as $\dot{\phi}=\omega_{e}$. And, approximating $\mu \approx m_{e}$:

$$
\begin{equation*}
\omega_{e}=\frac{\ell}{m_{e} r_{0}^{2}} \tag{*}
\end{equation*}
$$

We would love to show that $\omega=\omega_{e}$. But how? The key is to re-examine our solution for the equilibrium separation, r_{0} which connects r_{0} to the angular momentum ℓ, and the gravitational constant G. It was

$$
\begin{aligned}
r_{0}= & \frac{\ell^{2}}{G m_{e} m_{s} \mu} \approx \frac{\ell^{2}}{G m_{e}^{2} m_{s}} \\
& \Rightarrow G^{2} m_{e}^{4} m_{s}^{2}=\frac{\ell^{4}}{r_{0}^{2}}
\end{aligned}
$$

Now, re-examining the formula for ω, (and using equation (*)):

$$
\begin{align*}
\omega & =\frac{G^{2} m_{e}^{3} m_{s}^{2}}{\ell^{3}} \tag{1}\\
& =G^{2} m_{e}^{4} m_{s}^{2} \cdot \frac{1}{m_{e} \ell^{3}} \tag{2}\\
& =\frac{\ell^{4}}{r_{0}^{2}} \cdot \frac{1}{m_{e} \ell^{3}}=\frac{\ell}{m_{e} r_{0}^{2}}=\omega_{e} \tag{3}
\end{align*}
$$

In [0]:

