Clear["Global`*"]

$\mathrm{U}:=\mathrm{u} 0$ * ($\mathrm{r} / \mathrm{R}+\lambda^{\wedge} \mathrm{N}$ * R / r)
What does it look like?? First term is a line with slope $1 / R$, second term is $\sim 1 / r$, exploding as $r->0$:
Plot [U /. $\{u 0 \rightarrow 1, R \rightarrow 1, \lambda \rightarrow 5\},\{r, 0.0001,15\}]$

Position of minimum occurs where $d U / d r=0$
$\mathrm{D}[\mathrm{U}, \mathrm{r}]$
$u 0\left(\frac{1}{R}-\frac{R \lambda^{2}}{r^{2}}\right)$

```
solve (1/R-R\mp@subsup{|}{}{\wedge}2/\mp@subsup{r}{}{\wedge}2=0) for r
    Solve[R^(-1) - (R* 片2) / r^2 == 0, r]
{{r->-R\lambda},{r->R\lambda} }
```

We'll just take the positive solution, and call this r0. For the values of the graph above, this should be $\mathrm{r} 0=5$. Looks plausible.

```
r0 = R * \lambda
```

R λ
The effective spring constant, k, is the curvature (second derivative) evaluated at the position of the minimum.

$$
\begin{aligned}
& \mathrm{D}[\mathrm{D}[\mathrm{U}, \mathrm{r}], \mathrm{r}] \\
& \frac{2 \mathrm{Ru} 0 \lambda^{2}}{r^{3}} \\
& \mathrm{k}=\% / \cdot r \rightarrow r 0 \\
& \frac{2 \mathrm{u} 0}{\mathrm{R}^{2} \lambda}
\end{aligned}
$$

The angular frequency of oscillation is $\omega=\sqrt{\frac{k}{m}}$, that is

```
Sqrt[k/m]
\sqrt{}{2}\sqrt{}{\frac{u0}{m\mp@subsup{R}{}{2}\lambda}}
U
1 0
kb}=k/.{u0->1,R->1,\lambda->5
2
5
U
10+0.2(-5+r)2
```

$\operatorname{Plot}\left[\left\{U / .\{u 0 \rightarrow 1, R \rightarrow 1, \lambda \rightarrow 5\}, 10+\frac{1}{2} k_{b} *(r-5)^{\wedge} 2\right\},\{r, 4,6\}\right]$

