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Inheritance Problem

Bob, Carol, and Doug have inherited equal shares in their mother’s estate consisting of an old cabin on an acre of land in the country, sterling silverware for twelve, and a two year old sports car. The siblings have different opinions about the worth of each item as given in the table below (numbers are in thousands of dollars) and they are willing to either give or receive cash to help obtain a fair allocation of the estate.  Suggest a solution.

	
	Bob
	Carol
	Doug

	Cabin
	30
	15
	5

	Silver
	5
	20
	8

	Car
	19
	25
	8

	Total
	54
	60
	21


Efficient Allocations

An allocation is efficient if there is no other allocation that is better for everyone.

	
	Bob
	Carol
	Doug

	Cabin
	30
	15
	5

	Silver
	5
	20
	8

	Car
	19
	25
	8

	Total
	54
	60
	21


If each sibling is given one-third of each item, then   

Bob values his bundle at 
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Carol values her bundle at 
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Doug values his bundle at 
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If we give Bob the cabin, Carol the car, and Doug the silver, then the values are 
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So, the first allocation is not efficient.

Theorem.  An allocation is efficient if and only if each item is given to the sibling who values it the most. 

First Price Auction

Sell each item to the highest bidder, who pays the amount bid, and the money collected is divided equally among the siblings.

	
	Bob
	Carol
	Doug

	Cabin
	30
	15
	5

	Silver
	5
	20
	8

	Car
	19
	25
	8

	Total
	54
	60
	21


Bob receives the cabin and pays $30.

Carol receives the silver and car and pays 20 + 25 = $45.

Doug receives and pays nothing.

The 30 + 45 + 0 = $75 in the pot is divided evenly.

Bob receives the cabin and pays 30 – 25 = $5.  Bob values this at 30 – 5 = $25.

Carol receives the silver and car and pays 45 – 25 = $20.  Carol values this at 20 + 25 – 20 = $25.

Doug receives $25.  Doug values this at $25.

Second Price Auction

Sell each item to the highest bidder, who pays the second highest amount bid, and the money collected is divided equally among the siblings.

	
	Bob
	Carol
	Doug

	Cabin
	30
	15
	5

	Silver
	5
	20
	8

	Car
	19
	25
	8

	Total
	54
	60
	21


Bob receives the cabin and pays $15.

Carol receives the silver and car and pays 8 + 19 = $27.

Doug receives and pays nothing.

The 15 + 27 + 0 = $42 in the pot is divided evenly.

Bob receives the cabin and pays 15 – 14 = $1.  Bob values this at 30 – 1 = $29.

Carol receives the silver and car and pays 27 – 14 = $13.  Carol values this at 20 + 25 – 13 = $32.

Doug receives $14.  Doug values this at $14.

Knaster’s Method

Sell each item to the highest bidder and distribute money so that each sibling receives the same incremental value above their “fair share” of the estate (1/3 of what they think the estate is worth).

	
	Bob
	Carol
	Doug

	Cabin
	30
	15
	5

	Silver
	5
	20
	8

	Car
	19
	25
	8

	Total
	54
	60
	21


The value obtained by each sibling should be
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Adding these equalities, we obtain
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Bob’s bundle should be worth 18 + 10 = $28: receipt of the cabin and a payment of $2.

Carol’s bundle should be worth 20 + 10 = $30: receipt of the silver and car and a payment of $15.

Doug’s bundle should be worth 7 + 10 = $17: receipt of $17.

Equitable and Efficient Method

Sell each item to the highest bidder and distribute money so that each sibling receives the same fraction of the estate (from their own perspectives).

	
	Bob
	Carol
	Doug

	Cabin
	30
	15
	5

	Silver
	5
	20
	8

	Car
	19
	25
	8

	Total
	54
	60
	21


Each sibling should receive the same fraction of the estate:
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Adding these equalities, we obtain
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Bob’s bundle should be worth 
[image: image11.wmf](5/9)54$30
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: receipt of the cabin.

Carol’s bundle should be worth 
[image: image12.wmf](5/9)60$33.33

=

: receipt of the silver and car and a payment of $11.67.

Doug’s bundle should be worth 
[image: image13.wmf](5/9)21$11.67

=

: receipt of $11.67.

Moulin-Shapley Method

Sell each item to the highest bidder and distribute money so that each sibling receives his or her average, over sibling orders, marginal contribution to the group stand-alone values.

	
	Bob
	Carol
	Doug

	Cabin
	30
	15
	5

	Silver
	5
	20
	8

	Car
	19
	25
	8

	Total
	54
	60
	21


	Group
	BCD
	BC
	BD
	CD
	B
	C
	D

	Stand-Alone Value
	75
	75
	57
	60
	54
	60
	21


	Order
	Bob
	Carol
	Doug

	BCD
	54
	21
	0

	BDC
	54
	18
	3

	CBD
	15
	60
	0

	CDB
	15
	60
	0

	DBC
	36
	18
	21

	DCB
	15
	39
	21

	Total
	189
	216
	45

	Average
	31.5
	36
	7.5


Group Stand-Alone Allocations 

No group of siblings receives more than its stand-alone value (maximum obtainable if the group owned the entire estate).

	
	Bob
	Carol
	Doug

	Cabin
	30
	15
	5

	Silver
	5
	20
	8

	Car
	19
	25
	8

	Total
	54
	60
	21


	Group
	Stand-Alone Value
	Constraint

	BCD
	75
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	BC
	75
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	BD
	57
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	CD
	60
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	B
	54
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	D
	21
	
[image: image20.wmf]21

D

v

£




The first-price action does not yield a group stand-alone allocation for our example because 
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Group Rational Allocations 

Each group of siblings receives at least its ownership value (maximum obtainable if the group owned a proportionate share of the estate).

	
	Bob
	Carol
	Doug

	Cabin
	30
	15
	5

	Silver
	5
	20
	8

	Car
	19
	25
	8

	Total
	54
	60
	21


	Group
	Stand Alone
	Owner-ship
	Constraint

	BCD
	75
	75
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	BC
	75
	50
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	BD
	57
	38
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	CD
	60
	40
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	B
	54
	18
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	C
	60
	20
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	D
	21
	7
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Envy-Free Allocations 

No sibling would prefer another’s bundle to his or her own.

	
	Bob
	Carol
	Doug

	Cabin
	30
	15
	5

	Silver
	5
	20
	8

	Car
	19
	25
	8

	Total
	54
	60
	21


Let 
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 be the money allocated to sibling 
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	Bob does not envy Carol.
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	Carol does not envy Bob.
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	Bob does not envy Doug.
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	Doug does not envy Bob.
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	Carol does not envy Doug.
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	Doug does not envy Carol.
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Incompatibilities of the Properties

	
	Bob
	Carol
	Doug

	Item
	30
	27
	3


Consider an efficient allocation.  

If the allocation is group stand-alone, then 
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If the allocation is group rational, then 
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Properties of Allocation Methods (Part 1)
	
	Bob
	Carol
	Doug

	Item
	30
	27
	3


If the allocation is group stand-alone, then 
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If the allocation is efficient and envy-free, then 
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If the allocation is efficient and group rational, 
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The first price auction obtains 
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The second price auction obtains 
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Knaster’s obtains 
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Equitable obtains 
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Moulin-Shapley obtains 
[image: image64.wmf](16,13,1)

v

=

, and so is not envy-free or group rational.

Properties of Allocation Methods (Part 2)

	
	Bob
	Carol
	Doug

	Item
	30
	10
	10


Equitable obtains 
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The stand-alone value for the group consisting of Carol and Doug is 
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, and so the equitable method is not group stand-alone.

Summary

	
	Envy-Free
	Group Rational
	Group 
Stand-Alone

	First Price Auction
	Yes
	Yes
	No

	Second Price Auction
	Yes
	Yes
	No

	Knaster’s Method
	No
	No
	No

	Equitable and Efficient
	No
	No
	No

	Moulin-Shapley
	No
	No
	Yes
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